信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (8): 26-34.doi: 10.12267/j.issn.2096-5931.2025.08.004

专题:人工智能+ 上一篇    下一篇

新一代数据标注产业对“人工智能+”范式创新的作用机理与实践路径研究

Research on the mechanism of action and practical path of the new generation of data annotation industry on the innovation of the “AI+” paradigm

燕江依, 李荪, 樊威, 曹峰   

  1. 中国信息通信研究院人工智能研究所,北京 100191
  • 收稿日期:2025-06-30 出版日期:2025-08-25 发布日期:2025-09-02
  • 通讯作者: 李荪,中国信息通信研究院人工智能研究所高级工程师,主要从事人工智能政策、标准、产业研究,涵盖机器学习、语音感知认知技术以及产品融合应用等方面的研究工作
  • 作者简介:
    燕江依,中国信息通信研究院人工智能研究所工程师,主要从事人工智能数据质量与模型性能闭环反馈机制与方法、人工智能数据集质量评估体系和工具平台研发、人工智能高质量数据集建设路径以及人工智能高质量数据集标准体系设计等方面的研究工作
    樊威,中国信息通信研究院人工智能研究所高级工程师,主要从事人工智能高质量数据集建设及数据标注等方面的研究工作
    曹峰,中国信息通信研究院人工智能研究所高级工程师,人工智能关键技术和应用评测工业和信息化部重点实验室副主任,主要负责牵头可信AI人工智能评测标准体系和能力建设,以及工程化能力等相关评估规范的研制与评测工作

YAN Jiangyi, LI Sun, FAN Wei, CAO Feng   

  1. Artificial Intelligence Institute, China Academy of Information and Communications Technology, Beijing 100191, China
  • Received:2025-06-30 Online:2025-08-25 Published:2025-09-02

摘要:

数据标注作为人工智能产业基础层的关键环节,其发展质量直接影响人工智能算法模型性能与应用场景落地,是人工智能高质量数据集的核心生产力。系统梳理了数据标注产业的内涵界定、产业链结构、发展模式及政策环境,详细总结了数据标注产业赋能“人工智能+”重点行业应用实践情况,深入剖析了DeepSeek等大模型技术革新带来的产业变革,总结了当前数据标注产业存在的顶层设计缺乏、人才瓶颈、技术协同不足等核心问题。研究提出应通过强化国家级标注基地示范效应、提升数据标注技术水平、推进“人工智能+”行业应用水平、构建协同创新生态、完善标准体系、深化国际合作等路径,推动数据标注产业高质量发展。

关键词: 人工智能+, 数据标注, 高质量数据集, 行业应用

Abstract:

Data annotation, as a key link in the foundational layer of the artificial intelligence industry, directly affects the performance of artificial intelligence (AI) algorithm models and the implementation of application scenarios, and is the core productive force of high-quality AI datasets. This paper systematically reviews the connotation definition, industrial chain structure, development model and policy environment of the data annotation industry, presents a detailed summary of the application practices regarding how the data annotation industry empowers the “AI+” initiative across key sectors, deeply analyzes the industrial transformation brought about by the technological innovation of large models such as DeepSeek, and summarizes the core problems existing at present, such as the lack of top-level design, talent bottlenecks, and insufficient technological collaboration. This study proposes that the high-quality development of the data annotation industry should be promoted through paths such as strengthening the demonstration effect of national-level annotation bases, improving the technical level of data annotation, continuously advancing the application of “AI+” in key industries, constructing a collaborative innovation ecosystem, improving the standard system, and deepening international cooperation.

Key words: AI+, data annotation, high-quality dataset, industry application

中图分类号: