| [1] |
COSCIA M, WESSEL M J, CHAUDARY U, et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke[J]. Brain, 2019, 142(8):2182-2197.
doi: 10.1093/brain/awz181
pmid: 31257411
|
| [2] |
CHEN L, ZHANG H. Personalized rehabilitation: bridging the gap with AI and robotics[J]. International Journal of Physical Medicine & Rehabilitation, 2023, 11(3), 301-310.
|
| [3] |
YOSHIMOTO T, SHIMIZU I, HIROI Y. Sustained effects of once-a-week gait training with hybrid-assistive limb for rehabilitation in chronic stroke: case study[J]. Journal of Physical Therapy Science, 2016, 28(9): 2684-2687.
|
| [4] |
KIM S, PARK J. Smart rehabilitation systems: addressing the limitations of traditional therapy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32(1):45-53.
|
| [5] |
ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. Journal of Neural Engineering, 2019, 16(1): 011001.
|
| [6] |
杨帮华, 张永怀. 基于卷积神经网络提高脑卒中患者二分类运动想象任务识别准确率的可行性研究[J]. 上海医学, 2024, 47(4):253-258.
|
| [7] |
WANG T, DU S, DONG E. A novel method to reduce the motor imagery BCI illiteracy[J]. Medical & Biological Engineering & Computing, 2021, 59(11-12):2205-2217.
|
| [8] |
LI L, ZHANG Y, HUANG L, et al. Robot assisted treatment of hand functional rehabilitation based on visual motor imagination[J]. Frontiers in Aging Neuroscience, 2022, 14: 870871.
|
| [9] |
LI M, XU G, XIE J, et al. A review: motor rehabilitation after stroke with control based on human intent[J]. Journal of Engineering in Medicine, 2018, 232(4): 344-360.
|
| [10] |
RAMOS M A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study[J]. Annals of Neurology, 2013, 74(1): 100-108.
|
| [11] |
LI M, LIU Y, WU Y, et al. Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training[J]. International Journal of Neuroscience, 2014, 124(6): 403-415.
doi: 10.3109/00207454.2013.850082
pmid: 24079396
|
| [12] |
BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nature Communications, 2018, 9(1): 2421.
doi: 10.1038/s41467-018-04673-z
pmid: 29925890
|
| [13] |
SUN Y K, CHEN X G, LIU B C, et al. Signal acquisition of brain-computer interfaces: a medical-engineering crossover perspective review[J]. Fundamental Research, 2025, 5(1):3-16.
|
| [14] |
YANG S, LI R, LI H, et al. Exploring the use of brain-computer interfaces in stroke neurorehabilitation[J]. BioMed Research International, 2021: 9967348.
|
| [15] |
ROBINSON N, MANE R, CHOUHAN T, et al. Emerging trends in BCI-robotics for motor control and rehabilitation[J]. Current Opinion in Biomedical Engineering, 2021, 20:100354.
|
| [16] |
ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. Journal of Neural Engineering, 2019, 16(1): 011001.
|
| [17] |
GUO N, WANG X, DUANMU D, et al. SSVEP-based brain computer interface controlled soft robotic glove for post-stroke hand function rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1737-1744.
|
| [18] |
SINGH P, HEERA P K, KAUR G. Expression of neuronal plasticity markers in hypoglycemia induced brain injury[J]. Molecular and Cellular Biochemistry, 2003, 247(1-2): 69-74.
pmid: 12841633
|
| [19] |
QU H, ZENG F X, TANG Y B, et al. The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a Meta-analysis and systematic review[J]. Disability and Rehabilitation: Assistive Technology, 2022, 19(1):30-41.
|
| [20] |
MA Z Z, WU J J, CAO Z, et al. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients[J]. Journal of NeuroEngineering and Rehabilitation, 2024, 21(1): 91.
|
| [21] |
MATTLA D, PICHIORRI F, COLAMARINO E, et al. The promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response[J]. BMC Neurology, 2020, 20(1):254.
doi: 10.1186/s12883-020-01826-w
pmid: 32593293
|
| [22] |
HAYWARD K S, SCHMIDT J, LOHSE K R, et al. Are we armed with the right data? Pooled individual data review of biomarkers in people with severe upper limb impairment after stroke[J]. NeuroImage: Clinical, 2016, 13:310-319.
|
| [23] |
王玉龙. 康复功能评定学[M]. 北京: 人民卫生出版社, 2008.
|
| [24] |
POPE A T, BOGART E H, BARTOLOME D S. Biocybernetic system evaluates indices of operator engagement in automated task[J]. Biological Psychology, 1995, 40(1-2):187-195.
pmid: 7647180
|
| [25] |
ZHAO X, ZHANG H, ZHU G, et al. A multi-branch 3Dconvolutional neural network for EEG-based motor imagery classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019, 27(10): 2164-2177.
|