信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (3): 25-35.doi: 10.12267/j.issn.2096-5931.2025.03.004

专题:脑机接口 上一篇    下一篇

融合专注度评估与反馈的运动想象脑机接口康复训练研究

Research on motor imagery brain-computer interface rehabilitation training method incorporating attention assessment and feedback

范雪梅, 满建志, 张慧, 龙善丽, 孙光宇   

  1. 华东光电集成器件研究所,苏州 215163
  • 收稿日期:2025-02-18 出版日期:2025-03-25 发布日期:2025-04-02
  • 作者简介:
    范雪梅,华东光电集成器件研究所工程师,主要从事低功耗计算电路、脑机接口、神经网络加速器和医疗应用验证等工作
    满建志,华东光电集成器件研究所工程师,主要从事脑机接口、深度学习和软件系统等工作
    张慧,华东光电集成器件研究所工程师,主要从事脑机接口领域的工作
    龙善丽,华东光电集成器件研究所研究员,主要从事数模混合集成电路、脑机接口、信号处理系统及应用研发等工作
    孙光宇,华东光电集成器件研究所工程师,主要从事脑机接口软硬件系统研发工作

FAN Xuemei, MAN Jianzhi, ZHANG Hui, LONG Shanli, SUN Guangyu   

  1. East China Institute of Optoelectronic Integrated Devices, Suzhou 215163, China
  • Received:2025-02-18 Online:2025-03-25 Published:2025-04-02

摘要:

针对目前基于运动想象(Motor Imagery,MI)脑机接口的康复训练方法试验方式单一、缺乏实时反馈以及脑电解码率较低的问题,创新性地提出一种融合MI专注度评估与反馈的康复训练方法。该方法引入MI专注度解析,采用MI引导的脑电采集范式和集成专注程度评估的任务设计,提高脑电数据有效性。同时,根据被试任务态专注度评估反馈参数,实现更高效解码。实验结果表明,该训练方法提高了被试的专注度,验证了被试不同专注程度下的脑电差异,MI脑电二分类平均准确率达到84.37%。

关键词: 脑机接口, 运动想象, 专注度评估反馈优化, 康复训练

Abstract:

Current motor imagery brain-computer interface (MI-BCI) rehabilitation training methods suffer from a lack of diversity in experimental approaches, insufficient real-time feedback optimization, and low decoding rates of electroencephalogram (EEG) signals. This paper innovatively proposes an MI-BCI rehabilitation training method to address these problems, integrating concentration assessment and feedback optimization. A paradigm of EEG signals acquisition is explored by incorporating concentration level assessment. The efficiency of decoding motor imagery EEG signals is significantly improved, benefiting from the feedback of concentration assessment of the subjects in a task state. Experimental results demonstrate that the proposed novel MI-BCI rehabilitation training method improves the concentration levels of subjects, and simultaneously validates the differences in EEG signals with varying degree of concentration. Furthermore, an MI-EEG binary classification accuracy of 84.37% is achieved.

Key words: BCI, motor imagery, integrating concentration assessment and feedback, rehabilitation training

中图分类号: