信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (3): 16-24.doi: 10.12267/j.issn.2096-5931.2025.03.003

专题:脑机接口 上一篇    下一篇

基于Nginx负载均衡的大规模脑电信号处理集群架构设计与实现

Design and implementation of high-performance EEG signal processing cluster architecture based on Nginx load balancing

刘玉婷, 吴彤, 任祥辉   

  1. 中国电子科技集团公司第十五研究所,北京 100083
  • 收稿日期:2025-02-17 出版日期:2025-03-25 发布日期:2025-04-02
  • 作者简介:
    刘玉婷,中国电子科技集团公司第十五研究所高级工程师,主要从事软件架构设计和研发工作
    吴彤,中国电子科技集团公司第十五研究所工程师,主要从事软件应用设计和工程项目管理工作
    任祥辉,中国电子科技集团公司第十五研究所部门主任,主要从事软件系统设计及工程项目管理工作

LIU Yuting, WU Tong, REN Xianghui   

  1. The 15th Research Institute of China Electronics Technology Group Corporation, Beijing 100083, China
  • Received:2025-02-17 Online:2025-03-25 Published:2025-04-02

摘要:

随着脑电信号处理技术在医疗、神经科学及人机交互领域的广泛应用,传统单机架构在高并发场景下存在计算资源受限、延迟高、稳定性差等问题。设计了一种基于Nginx负载均衡的脑电信号处理集群架构,通过反向代理技术将并发请求分配至分布式节点,结合标准化数据处理流程及统一集群入口,显著提升系统实时性、资源利用率与吞吐量。实验表明,在并发量为100~2 000个的情况下,集群架构的平均响应时间与最小响应时间均有了显著优化,同时吞吐量也得到了大幅提升,且Nginx的IP访问控制策略有效拦截非法请求,保障数据安全。该架构通过动态负载均衡实现资源高效调度,为大规模神经数据处理提供技术支撑。未来可融合人工智能与边缘计算技术,拓展至复杂脑电分析场景,助力精准医疗与智能交互发展。

关键词: Nginx, 负载均衡, 集群, 脑电信号处理, 安全访问

Abstract:

With the widespread application of Electroencephalogram (EEG) signal processing technology in medical, neuroscience, and human-computer interaction fields, traditional single-machine architectures face challenges such as limited computational resources, high latency, and poor stability in high-concurrency scenarios. This paper proposes a high-performance EEG signal processing cluster architecture based on Nginx load balancing. By leveraging Nginx’s reverse proxy technology, concurrent requests are distributed to distributed nodes, combined with standardized data processing workflows and a unified cluster entry point, significantly improving real-time performance of system, resource utilization, and throughput. Experimental results demonstrate that under 100~2 000 concurrent loads, the cluster architecture achieves notable optimizations in both average and minimum response time, along with a substantial increase in throughput. Additionally, Nginx’s IP access control strategy effectively blocks unauthorized requests, ensuring data security. The architecture enables efficient resource scheduling through dynamic load balancing, providing robust technical support for large-scale neural data processing. Future work will integrate artificial intelligence and edge computing technologies to extend the architecture to complex EEG analysis scenarios, advancing precision medicine and intelligent interaction development.

Key words: Nginx, load balancing, cluster, EEG signal processing, secure access

中图分类号: