信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (10): 73-86.doi: 10.12267/j.issn.2096-5931.2025.10.011

技术与标准 上一篇    下一篇

多模态深度伪造检测技术综述

A review of multimodal deepfake detection technology

王灵1, 闫坤2, 聂鹏2   

  1. 1 电信科学技术研究院, 北京 100191
    2 中国信息通信研究院知识产权与创新发展中心, 北京 100191
  • 收稿日期:2025-05-10 出版日期:2025-10-25 发布日期:2025-11-06
  • 作者简介:
    王灵, 电信科学技术研究院硕士研究生在读,主要研究方向为深度伪造检测等
    闫坤, 中国信息通信研究院知识产权与创新发展中心低空经济研究部主任,高级工程师,主要研究方向为新兴产业政策法律、标准必要专利评估、知识产权鉴定、专利分析等
    聂鹏, 中国信息通信研究院知识产权与创新发展中心工程师,主要从事低空经济以及相关专利等方面的研究工作

WANG Ling1, YAN Kun2, NIE Peng2   

  1. 1 Telecommunications Science and Technology Research Institute, Beijing 100191, China
    2 Intellectual Property and Innovation Development Center, China Academy of Information and Communications Technology, Beijing 100191, China
  • Received:2025-05-10 Online:2025-10-25 Published:2025-11-06

摘要:

深度伪造技术的快速发展加剧了社会信任危机与安全威胁,其滥用场景已从虚假新闻、身份欺诈扩展至更广泛领域。为应对挑战,深度伪造检测技术逐步从单模态检测发展为多模态融合检测,通过整合视听等多源信息显著提升检测精度与鲁棒性。首先,评析多模态数据集的特征及适用场景;其次,分类阐述“检测—定位—解释”三位一体的技术方法体系,进而评估现有检测平台的实际效能;最后,展望未来的研究方向。研究旨在构建多模态深度伪造检测的技术图谱,为领域发展提供理论支撑与实践参考。

关键词: 深度伪造检测, 多模态深度伪造检测, 数据集

Abstract:

The rapid development of deepfake technology has exacerbated the crisis of social trust and security threats, and its abuse scenarios have expanded from fake news and identity fraud to a wider field. In order to meet the challenges, the deepfake detection technology has gradually developed from single-modal to multimodal fusion detection, and the detection accuracy and robustness are significantly improved by integrating multi-source information such as audio-visual information. Firstly, the characteristics and application scenarios of multimodal datasets are analyzed. Secondly, the technical methodology system of detection-positioning-interpretation is classified and described. Then, the actual performance of the existing testing platform is evaluated. Finally, the future research directions are prospected. The purpose of this study is to construct a technical map of multimodal deepfake detection, and to provide theoretical support and practical reference for the development of the field.

Key words: deepfake detection, multimodal deepfake detection, datasets

中图分类号: