| [1] |
LAMPORT L, SHOSTAK R, PEASE M. The Byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3): 382-401.
|
| [2] |
CASTRO M, LISKOV B. Practical Byzantine fault tolerance[C]// Proceedings of the Third Symposium on Operating Systems Design and Implementation. New Orleans: OsDI, 1999: 173-186.
|
| [3] |
CASTRO M, LISKOV B. Practical Byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002, 20(4): 398-461.
|
| [4] |
AUBLIN P-L, MOKHTAR S B, QUEMA V. RBFT: redundant Byzantine fault tolerance[C/OL]// 2013 IEEE 33rd International Conference on Distributed Computing Systems. Philadelphia, PA, USA: IEEE, 2013: 297-306[2024-06-03]. http://ieeexplore.ieee.org/document/6681599/.
|
| [5] |
MILLER A, XIA Y, CROMAN K, et al. The honey badger of BFT protocols[C/OL]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna Austria: ACM, 2016: 31-42[2024-06-03]. https://dl.acm.org/doi/10.1145/2976749.2978399.
|
| [6] |
YIN M, MALKHI D, REITER M K, et al. HotStuff: BFT consensus with linearity and responsiveness[C/OL]// Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. Toronto ON Canada: ACM, 2019: 347-356[2024-06-03]. https://dl.acm.org/doi/10.1145/3293611.3331591.
|
| [7] |
GUO B, LU Z, TANG Q, et al. Dumbo: faster asynchronous BFT protocols[C/OL]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Virtual Event USA: ACM, 2020: 803-818[2024-06-03]. https://dl.acm.org/doi/10.1145/3372297.3417262.
|
| [8] |
LU Y, LU Z, TANG Q, et al. Dumbo-MVBA: optimal multi-valued validated asynchronous Byzantine agreement, revisited[C/OL]// Proceedings of the 39th Symposium on Principles of Distributed Computing. Virtual Event Italy: ACM, 2020: 129-138[2024-06-03]. https://dl.acm.org/doi/10.1145/3382734.3405707.
|
| [9] |
PEASE M, SHOSTAK R, LAMPORT L. Reaching agreement in the presence of faults[J]. Journal of the ACM, 1980, 27(2): 228-234.
|
| [10] |
FISCHER M J, LYNCH N A, MERRITT M. Easy impossibility proofs for distributed consensus problems[J]. Distributed Computing, 1986, 1(1): 26-39.
|
| [11] |
KIKTENKO E O, POZHAR N O, ANUFRIEV M N, et al. Quantum-secured blockchain[J]. Quantum Science and Technology, 2018, 3(3): 035004.
|
| [12] |
SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C/OL]// Proceedings 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA: IEEE Computer Society Press, 1994: 124-134[2024-06-03]. http://ieeexplore.ieee.org/document/365700/.
|
| [13] |
SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
|
| [14] |
O’BRIEN J L. Optical quantum computing[J]. Science, 2007, 318(5856): 1567-1570.
pmid: 18063781
|
| [15] |
FEDOROV A K, KIKTENKO E O, LVOVSKY A I. Quantum computers put blockchain security at risk[J]. Nature, 2018, 563(7732): 465-467.
|
| [16] |
ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
|
| [17] |
FITZI M, GISIN N, MAURER U. Quantum solution to the Byzantine agreement problem[J]. Physical Review Letters, 2001, 87(21): 217901.
|
| [18] |
GAERTNER S, BOURENNANE M, KURTSIEFER C, et al. Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection[J]. Physical Review Letters, 2008, 100(7): 070504.
|
| [19] |
NEIGOVZEN R, RODÓ C, ADESSO G, et al. Multipartite continuous-variable solution for the Byzantine agreement problem[J]. Physical Review A, 2008, 77(6): 062307.
|
| [20] |
RAHAMAN R, WIEŚNIAK M, ŻUKOWSKI M, Quantum Byzantine agreement via hardy correlations and entanglement swapping[J]. Physical Review A, 2015, 92(4): 042302.
|
| [21] |
TAVAKOLI A, CABELLO A, ŻUKOWSKI M, et al. Quantum clock synchronization with a single qudit[J]. Scientific Reports, 2015, 5(1): 7982.
|
| [22] |
SMANIA M, ELHASSAN A M, TAVAKOLI A, et al. Experimental quantum multiparty communication protocols[J]. Npj Quantum Information, 2016, 2(1): 16010.
|
| [23] |
SUN X, KULICKI P, SOPEK M. Multi-party quantum Byzantine agreement without entanglement: 10[J]. Entropy, 2020, 22(10): 1152.
|
| [24] |
BEN-OR M, HASSIDIM A. Fast quantum Byzantine agreement[C/OL]// Proceedings of the Thirty-seventh annual ACM symposium on Theory of Computing. Baltimore MD USA: ACM, 2005: 481-485[2024-06-03]. https://dl.acm.org/doi/10.1145/1060590.1060662.
|
| [25] |
GOTTESMAN D, CHUANG I. Quantum digital signatures[J]. arXiv Preprint, arXiv: quant-ph/0105032, 2001.
|
| [26] |
CLARKE P J, COLLINS R J, DUNJKO V, et al. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light[J]. Nature Communications, 2012, 3(1): 1174.
|
| [27] |
DUNJKO V, WALLDEN P, ANDERSSON E. Quantum digital signatures without quantum memory[J]. Physical Review Letters, 2014, 112(4): 040502.
|
| [28] |
COLLINS R J, DONALDSON R J, DUNJKO V, et al. Realization of quantum digital signatures without the requirement of quantum memory[J]. Physical Review Letters, 2014, 113(4): 040502.
|
| [29] |
CROAL C, PEUNTINGER C, HEIM B. Free-space quantum signatures using heterodyne measurements[J]. Physical Review Letters, 2016, 117(10): 100503.
|
| [30] |
YIN H L, FU Y, CHEN Z B. Practical quantum digital signature[J]. Physical Review A, 2016, 93(3): 032316.
|
| [31] |
AMIRI R, WALLDEN P, KENT A, et al. Secure quantum signatures using insecure quantum channels[J]. Physical Review A, 2016, 93(3): 032325.
|
| [32] |
AN X B, ZHANG H, ZHANG C M, et al. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system[J]. Optics Letters, 2019, 44(1): 139-142.
|
| [33] |
T HORNTON M, SCOTT H, CROAL C, et al. Continuous-variable quantum digital signatures over insecure channels[J]. Physical Review A, 2019, 99(3): 032341.
|
| [34] |
RICHTER S, THORNTON M, KHAN I, et al. Agile and versatile quantum communication: signatures and secrets[J]. Physical Review X, 2021, 11(1): 011038.
|
| [35] |
ZHAO W, SHI R, SHI J, et al. Multibit quantum digital signature with continuous variables using basis encoding over insecure channels[J]. Physical Review A, 2021, 103(1): 012410.
|
| [36] |
PUTHOOR I V, AMIRI R, WALLDEN P, et al. Measurement-device-independent quantum digital signatures[J]. Physical Review A, 2016, 94(2): 022328.
|
| [37] |
YIN H L, FU Y, LIU H, et al. Experimental quantum digital signature over 102 km[J]. Physical Review A, 2017, 95(3): 032334.
|
| [38] |
ROBERTS G L, LUCAMARINI M, YUAN Z L, et al. Experimental measurement-device-independent quantum digital signatures[J]. Nature Communications, 2017, 8(1): 1098.
|
| [39] |
ZHANG C H, ZHOU X, ZHANG C M, et al. Twin-field quantum digital signatures[J]. Optics Letters, 2021, 46(15): 3757-3760.
|
| [40] |
LU Y S, CAO X Y, WENG C X, et al. Efficient quantum digital signatures without symmetrization step[J]. Optics Express, 2021, 29(7): 10162-10171.
|
| [41] |
WENG C X, LU Y S, GAO R Q, et al. Secure and practical multiparty quantum digital signatures[J]. Optics Express, 2021, 29(17): 27661-27673.
|
| [42] |
YIN H L, FU Y, LI C L, et al. Experimental quantum secure network with digital signatures and encryption[J]. National Science Review, 2023, 10(4): nwac228.
|
| [43] |
LI B H, XIE Y M, CAO X Y, et al. One-time universal hashing quantum digital signatures without perfect keys[J]. Physical Review Applied, 2023, 20(4): 044011.
|
| [44] |
WENG C X, GAO R Q, BAO Y, et al. Beating the fault-tolerance bound and security loopholes for Byzantine agreement with a quantum solution[J]. Research, 2023, 6: 0272.
|
| [45] |
YIN H L, LIU P, DAI W W, et al. Experimental composable security decoy-state quantum key distribution using time-phase encoding[J]. Optics Express, 2020, 28(20): 29479-29485.
|
| [46] |
WALLDEN P, DUNJKO V, KENT A, et al. Quantum digital signatures with quantum-key-distribution components[J]. Physical Review A, 2015, 91(4): 042304.
|
| [47] |
ZHOU Q, HUANG H, ZHENG Z, et al. Solutions to scalability of blockchain: a survey[J]. IEEE Access, 2020, 8: 16440-16455.
|
| [48] |
JING X, QIAN C, WENG C X, et al. Experimental quantum Byzantine agreement on a three-user quantum network with integrated photonics[J]. arXiv Preprint, arXiv: 2403.11441, 2024.
|
| [49] |
PAING S N, SETIAWAN J W, ULLAH M A, et al. Counterfactual quantum Byzantine consensus for human-centric metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(4): 905-918.
|