| [1] |
JAIN S, SETH G, PARUTHI A, et al. Synthetic data augmentation for surface defect detection and classification using deep learning[J]. Journal of Intelligent Manufacturing, 2020, 33(4):1007-1020.
|
| [2] |
HE X, CHANG Z, ZHANG L, et al. A survey of defect detection applications based on generative adversarial networks[J]. IEEE Access, 2022,10:113493-113512.
|
| [3] |
GAO Y, LI X, WANG V, et al. A review on recent advances in vision-based defect recognition towards industrial intelligence[J]. Journal of Manufacturing Systems, 2022,62:753-766.
|
| [4] |
RASOUL A, CHUNG-CHIAN H, SHAHAB B. A systematic review of deep learning approaches for surface defect detection in industrial applications[J]. Engineering Applications of Artificial Intelligence, 2024,130:107717.
|
| [5] |
RIQUELME C, PUIGCERVER J, MUSTAFA B, et al. Scaling vision with sparse mixture of experts[J]. arXiv Preprint, arXiv:2106.05974, 2021.
|
| [6] |
SHAO J, CHEN S Y, LI Y G, et al. INTERN: a new learning paradigm towards general vision[J]. arXiv Preprint, arXiv:2111.08687, 2022.
|
| [7] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv Preprint, arXiv:2010.11929, 2020.
|
| [8] |
BAO H B, DONG L, PIAO S H, et al. BEiT: BERT pre-training of image transformers[J]. arXiv Preprint, arXiv:2106.08254, 2022.
|
| [9] |
张燚钧, 张润清, 周华健, 等. 视觉基础模型研究现状与发展趋势[J]. 中国图象图形学报, 2025, 30(1):1-24.
|
| [10] |
GU Z, ZHU B, ZHU G, et al. AnomalyGPT: detecting industrial anomalies using large vision-language models[J]. arXiv Preprint, arXiv:2308.15366, 2023.
|
| [11] |
ZUO Z, DONG J, WU Y, et al. Clip3d-ad: extending clip for 3d few-shot anomaly detection with multi-view images generation[J]. arXiv Preprint, arXiv:2406.18941, 2024.
|
| [12] |
YANG T, CHANG L, YAN J, et al. A survey on foundation-model-based industrial defect detection[J]. arXiv Preprint, arXiv:2502.19106, 2025.
|
| [13] |
ZOU Y, JEONG J, PEMULA L, et al. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022:392-408.
|
| [14] |
WANG C, ZHU W, GAO B, et al. Real-iad: a real-world multi-view dataset for benchmarking versatile industrial anomaly detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 22883-22892.
|
| [15] |
CAPOGROSSO L, GIRELLA F, TAIOLI F, et al. Diffusion-based image generation for in-distribution data augmentation in surface defect detection[J]. arXiv Preprint, arXiv:2406.00501, 2024.
|
| [16] |
TAI Y, YANG K, PENG T, et al. Defect image sample generation with diffusion prior for steel surface defect recognition[J]. arXiv Preprint, arXiv:2405.01872, 2024.
|
| [17] |
SNEHA K, SHENBAGA S V, SIVAMANI B, et al. Fabric defect detection using transfer learning[J]. International Journal of Research In Science & Amp Engineering, 2024: 62-71.
|
| [18] |
PANG S, ZHAO W, WANG S, et al. Permute-MAML: exploring industrial surface defect detection algorithms for few-shot learning[J]. Complex & Intelligent Systems, 2024, 10(1):1473-1482.
|
| [19] |
ZHANG Z, DONG C, WEI Z, et al. GCB-YOLO: a lightweight algorithm for wind turbine blade defect detection[J]. Wind Energy, 2025, 28(6):e70029.
|
| [20] |
LI J, CHENG M. FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8[J]. Physica Scripta, 2025,2:100.
|
| [21] |
LEI Z, ZHANG Y, WANG J, et al. Cloud-edge collaborative defect detection based on efficient yolo networks and incremental learning[J]. Sensors, 2024, 24(18):5921.
|
| [22] |
LIANG D, ZHANG H, HAN Q, et al. RasPiDets: a quasi-real-time defect detection method with end-edge-cloud collaboration[J]. IEEE Transactions on Industrial Informatics, 2025, 21(7):5525-5535.
|
| [23] |
工业互联网产业联盟, 中国信息通信研究院. 工业大模型技术应用与发展报告1.0[EB/OL]. (2023-12-26)[2025-06-28]. https://www.aii-alliance.org/resource/c331/n4797.html.
|
| [24] |
程荫. 中国AI赋能的工业质检解决方案市场分析[J]. 电子产品世界, 2021, 28(9):7-9,66.
|
| [25] |
人工智能创新应用洞察. 兴智新观察|AI起航秀-联想乐眼工业质检方案[EB/OL]. (2023-08-31)[2025-06-28]. https://mp.weixin.qq.com/s/FkEeCklOGOadGkEOyYirFA.
|
| [26] |
中国钢铁工业协会. 宝钢股份AI转型的深度实践[EB/OL]. (2025-06-19)[2025-06-28]. https://www.chinaisa.org.cn/gxportal/xfgl/portal/content.html?articleId=e4ce7b24517ca66973dac996f437c7c47460e4c30d7990c2bc75ca88743284c6&columnId=268f86fdf61ac8614f09db38a2d0295253043b03e092c7ff48ab94290296125c.
|
| [27] |
机器视觉产业联盟. 工业质检母机软件:联想边缘大脑V3.0[EB/OL]. (2025-04-22)[2025-06-29]. https://mp.weixin.qq.com/s/3wU1Hx0fiEDgtzgQ7uUSYA.
|
| [28] |
联想研究院. 国内首台轮胎外观缺陷全检AI设备[EB/OL]. (2025-05-23)[2025-06-29]. https://mp.weixin.qq.com/s/BmsDqS0OZHaCHjRKUhV-zA.
|
| [29] |
联想研究院. 这台AI设备, 让纺织业质检效率飙升300%![EB/OL]. (2025-06-27)[2025-06-29]. https://mp.weixin.qq.com/s/8KbiIXsqJpA9HL0d2jq6fQ.
|