信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (8): 64-70.doi: 10.12267/j.issn.2096-5931.2025.08.009

专题:人工智能+ 上一篇    下一篇

人工智能赋能软件形态演进趋势研究

Research on the evolutionary trends of software forms empowered by artificial intelligence

秦思思, 闫东伟, 齐可心, 程阳   

  1. 中国信息通信研究院人工智能研究所,北京 100191
  • 收稿日期:2025-07-01 出版日期:2025-08-25 发布日期:2025-09-02
  • 通讯作者: 闫东伟,中国信息通信研究院人工智能研究所工程师,主要研究方向为智能化软件工程技术发展路径、系列标准编制、评测、咨询等
  • 作者简介:
    秦思思,中国信息通信研究院人工智能研究所高级工程师,主要研究方向为智能化软件工程、大模型工程化、MLOps、MaaS等
    齐可心,中国信息通信研究院人工智能研究所助理工程师,主要研究方向为智能化软件工程、MLOps,主要参与系列标准编制、评测、咨询等工作
    程阳,中国信息通信研究院人工智能研究所工程师,主要研究方向为人工智能、区块链、数字双碳、开源等,主要负责相关标准编制、评测、课题研究等工作

QIN Sisi, YAN Dongwei, QI Kexin, CHENG Yang   

  1. Artificial Intelligence Institute, China Academy of Information and Communications Technology, Beijing 100191, China
  • Received:2025-07-01 Online:2025-08-25 Published:2025-09-02

摘要:

随着人工智能技术的飞速发展,特别是大模型在自然语言处理、计算机视觉等领域取得的突破性进展,传统软件的研发范式、架构设计、交互机制与部署方式正经历前所未有的变革。深入探讨以大模型为代表的人工智能技术对软件形态演进产生的影响;系统分析大模型驱动软件向智能化方向演进的内在机理,以及软件新形态呈现的核心特征;聚焦智能化分级要求,提出软件智能化成熟度模型和相应落地方案;阐述大模型时代软件演进面临的技术瓶颈、安全风险、伦理困境与工程挑战,进而展望其未来发展方向,为软件智能化演进的理论研究和实践探索提供参考。

关键词: 人工智能, 大模型, 软件, 智能化, 软件工程, 软件形态

Abstract:

With the rapid advancement of artificial intelligence technology, particularly groundbreaking progress made by large models in domains such as natural language processing and computer vision, the development paradigms, architectural designs, interaction mechanisms, and deployment methods of traditional software are undergoing an unprecedented transformation. This paper aims to explore in depth the impact of artificial intelligence technologies—epitomized by large models—on the evolution of software forms. It systematically analyzes the intrinsic mechanisms through which large models drive software toward intelligent evolution, as well as the core characteristics exhibited by new software forms. Focusing on the requirements for intelligence grading, this paper proposes a software intelligence maturity model and corresponding implementation strategies. Additionally, it elaborates on the technical bottlenecks, security risks, ethical dilemmas, and engineering challenges confronting software evolution in the era of large models, and prospect its future development directions, thereby providing references for theoretical research and practical exploration in the intelligent evolution of software.

Key words: artificial intelligence, large models, software, intelligence, software engineering, software form

中图分类号: