信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (7): 43-53.doi: 10.12267/j.issn.2096-5931.2025.07.006
张剑霄, 罗启明, 吴畅
收稿日期:2025-06-03
出版日期:2025-07-25
发布日期:2025-08-04
作者简介:
ZHANG Jianxiao, LUO Qiming, WU Chang
Received:2025-06-03
Online:2025-07-25
Published:2025-08-04
摘要:
当前,量子科技突飞猛进、应用逐步成熟、国际竞争加剧,正处在产业规模发展的关键时点。量子保密通信网络是基于量子密钥分发技术的基础设施,可以实现量子保密通信以应对量子计算所带来的信息安全威胁。基于此,通过梳理国内外光纤量子保密通信网络、量子卫星等建设进展,分析全球主要经济体的量子保密通信网络布局策略,提出面对量子科技国际竞争环境的未来发展建议。
中图分类号:
张剑霄, 罗启明, 吴畅. 全球量子保密通信网络建设进展[J]. 信息通信技术与政策, 2025, 51(7): 43-53.
ZHANG Jianxiao, LUO Qiming, WU Chang. Advances in the global quantum secure communication networks[J]. Information and Communications Technology and Policy, 2025, 51(7): 43-53.
| 网络名称 | 年份 | 国家和地区 | 主要建设内容 |
|---|---|---|---|
| 美国芝加哥城域量子网络 | 2022 | 美国芝加哥 | 芝加哥量子交易所和东芝公司共建,由6个节点和200 km的光纤组成 |
| 美国查塔努加电力局(Electric Power Board, EPB)量子网络 | 2022 | 美国查塔努加 | 美国EPB和美国Qubitekk公司共建,由10个节点组成 |
| 英国 | 2021 | 英国 | 光纤总长410 km,包括3个节点,2025年4月成功演示了长距离量子安全数据传输 |
| 新加坡国家量子安全网络 | 2022 | 新加坡 | 由新加坡政府和企业共建,共计10个节点,当前尚为测试平台,正推进商用化的NQSN+计划 |
| 韩国国家QKD网络 | 2022 | 韩国 | 韩国运营商SK和瑞士ID Quantique(IDQ)公司合作共建,网络里程数达到800 km,节点数超过48个 |
| 西班牙EuroQCI项目 | 2024 | 西班牙 | 建设以马德里和巴塞罗那为主干线的国家量子保密通信网络 |
| 荷兰QCINed项目 | 2023 | 荷兰 | 在乌特勒支、阿姆斯特丹、埃因霍温各部署一个量子保密通信网络,由12个节点组成,里程数约100 km |
| 奥地利QCI-CAT项目 | 2024 | 奥地利 | 由10个节点组成,里程数超过200 km |
| 保加利亚BGQCI项目 | 2023 | 保加利亚索非亚 | 在首都索非亚部署一个链接内政部、交通部、国防部、DSK银行的量子网络 |
表1 近年国外光纤量子保密通信网络建设情况[11-19]
| 网络名称 | 年份 | 国家和地区 | 主要建设内容 |
|---|---|---|---|
| 美国芝加哥城域量子网络 | 2022 | 美国芝加哥 | 芝加哥量子交易所和东芝公司共建,由6个节点和200 km的光纤组成 |
| 美国查塔努加电力局(Electric Power Board, EPB)量子网络 | 2022 | 美国查塔努加 | 美国EPB和美国Qubitekk公司共建,由10个节点组成 |
| 英国 | 2021 | 英国 | 光纤总长410 km,包括3个节点,2025年4月成功演示了长距离量子安全数据传输 |
| 新加坡国家量子安全网络 | 2022 | 新加坡 | 由新加坡政府和企业共建,共计10个节点,当前尚为测试平台,正推进商用化的NQSN+计划 |
| 韩国国家QKD网络 | 2022 | 韩国 | 韩国运营商SK和瑞士ID Quantique(IDQ)公司合作共建,网络里程数达到800 km,节点数超过48个 |
| 西班牙EuroQCI项目 | 2024 | 西班牙 | 建设以马德里和巴塞罗那为主干线的国家量子保密通信网络 |
| 荷兰QCINed项目 | 2023 | 荷兰 | 在乌特勒支、阿姆斯特丹、埃因霍温各部署一个量子保密通信网络,由12个节点组成,里程数约100 km |
| 奥地利QCI-CAT项目 | 2024 | 奥地利 | 由10个节点组成,里程数超过200 km |
| 保加利亚BGQCI项目 | 2023 | 保加利亚索非亚 | 在首都索非亚部署一个链接内政部、交通部、国防部、DSK银行的量子网络 |
| 发射时间 | 名称 | 规格 | 国家和地区 |
|---|---|---|---|
| 2016年8月 | 墨子号 | 640 kg | 中国 |
| 2019年6月 | SpooQy-1 | 3 U | 新加坡、英国、瑞士 |
| 2021年8月 | CAPsat | 2.8 kg | 美国 |
| 2022年7月 | 济南一号 | 98 kg | 中国 |
| 2024年8月 | Qube | 3.5 kg | 德国 |
| 计划2025年发射 | SpeQtre | 12 U | 英国、新加坡 |
| 计划2025年发射 | Qube-2 | 6 U | 德国 |
| 计划2025年发射 | EAGLE-1 | 300 kg | 欧盟 |
| 计划2026年发射 | 多颗微纳卫星 | — | 中国 |
| 计划2026年发射 | QEYSSat | 23 kg | 加拿大、英国 |
| 计划2026年发射 | SpeQtral-1 | 16 U | 新加坡 |
表2 已经发射或提出计划的量子保密通信卫星或载荷[20-28]
| 发射时间 | 名称 | 规格 | 国家和地区 |
|---|---|---|---|
| 2016年8月 | 墨子号 | 640 kg | 中国 |
| 2019年6月 | SpooQy-1 | 3 U | 新加坡、英国、瑞士 |
| 2021年8月 | CAPsat | 2.8 kg | 美国 |
| 2022年7月 | 济南一号 | 98 kg | 中国 |
| 2024年8月 | Qube | 3.5 kg | 德国 |
| 计划2025年发射 | SpeQtre | 12 U | 英国、新加坡 |
| 计划2025年发射 | Qube-2 | 6 U | 德国 |
| 计划2025年发射 | EAGLE-1 | 300 kg | 欧盟 |
| 计划2026年发射 | 多颗微纳卫星 | — | 中国 |
| 计划2026年发射 | QEYSSat | 23 kg | 加拿大、英国 |
| 计划2026年发射 | SpeQtral-1 | 16 U | 新加坡 |
| [1] | RENNER R, GISIN N, KRAUS B. Information-theoretic security proof for quantum-key-distribution protocols[J]. Physical Review A: Atomic, Molecular, and Optical Physics, 2005, 72(1): 012332. |
| [2] | TAMAKI K, LO H K, WANG W, et al. Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound[J]. arXiv Preprint, arXiv:1805.05511, 2018. |
| [3] | LI G, LUO H, YU J, et al. Information-theoretic secure key sharing for wide-area mobile applications[J]. IEEE Wireless Communications, 2023, 31(1): 118-124. |
| [4] | KYRLYNN D. The Q-Day threat. what happens when our data is no longer secure?[EB/OL]. (2024-11-08)[2025-05-10]. https://quantumzeitgeist.com/the-q-day-threat-what-happens-when-our-data-is-no-longer-secure/. |
| [5] | CHEN T Y, JIANG X, TANG S B, et al. Implementation of a 46-node quantum metropolitan area network[J]. NPJ Quantum Information, 2021, 7(1): 134. |
| [6] | 朱宏峰, 陈柳伊, 王学颖, 等. 量子密钥分发网络架构、进展及应用[J]. 沈阳师范大学学报(自然科学版), 2023, 41(6):515-525. |
| [7] |
CAO Y, ZHAO Y, COLMAN-MEIXNER C, et al. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD)[J]. Optics Express, 2017, 25(22): 26453-26467.
doi: 10.1364/OE.25.026453 pmid: 29092135 |
| [8] | LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549: 43-47. |
| [9] | LI Y, CAI W Q, REN J G, et al. Microsatellite-based real-time quantum key distribution[J]. Nature, 2025: 1-8. |
| [10] | Marketsand Markets. Quantum communication market:global forecast to 2030[EB/OL]. 2024[2025-05-10]. https://www.marketsandmarkets.com/Market-Reports/quantum-communication-market-143942501.html. |
| [11] | Chicago Quantum Exchange. Chicago expands and activates quantum network, taking steps toward a secure quantum internet[EB/OL]. (2022-06-16)[2025-05-10]. https://chicagoquantum.org/news/chicago-expands-and-activates-quantum-network-taking-steps-toward-secure-quantum-internet. |
| [12] | Oak Ridge National Laboratory. ORNL partnership with EPB tests new method for protecting quantum networks[EB/OL]. 2025[2025-05-12]. https://www.ornl.gov/news/ornl-partnership-epb-tests-new-method-protecting-quantum-networks. |
| [13] | WONFOR A, WHITE C, LORD A, et al. Quantum networks in the UK[C]// Metro and Data Center Optical Networks and Short-Reach Links IV. SPIE, 2021, 11712: 9-19. |
| [14] | NQSN. About NQSN[EB/OL]. [2025-05-10].https://www.nqsn.sg/. |
| [15] | IDQ. Nation-wide quantum safe key distribution network in South Korea[EB/OL]. [2025-05-12]. https://www.idquantique.com/quantum-safe-security/nation-wide-quantum-safe-key-distribution-network-in-south-korea/. |
| [16] | EuroQCI Spain. EuroQCI Spain at quantum communications networks in Aveiro, Portugal[EB/OL]. 2024[2025-05-12]. https://euroqci-spain.eu/quantum-communications-networks-portugal/. |
| [17] | Quantum Delta NL. Deployment of the first national quantum networks in the Netherlands[EB/OL]. 2023[2025-05-12]. https://quantumdelta.nl/qcined. |
| [18] | QCI-CAT. Making Austria quantum secure[EB/OL]. [2025-05-12]. https://qci-cat.at/. |
| [19] | BGQCI. Bulgarian national quantum communication infrastructure[EB/OL]. [2025-05-12]. https://euroqci.bg/. |
| [20] | LU C Y, CAO Y, PENG C Z, et al. Micius quantum experiments in space[J]. Reviews of Modern Physics, 2022, 94(3): 035001. |
| [21] | BAI X, BEDINGTON R, ILANGOVAN K, et al. Validating an entangled photon light source in space with the SpooQy-1 CubeSat[C]// The 32nd Annual AIAA/USU Conference on Small Satellites. Utah, USA, 2018. |
| [22] | SULTANA N, KRYNSKI J, LIM J G, et al. CubeSat single-photon detector module for performing in-orbit laser annealing to heal radiation damage[C]// The 36th Annual Small Satellite Conference. Utah, USA, 2022. |
| [23] | ELSNER L, PETERMANN T, VONARNIM M, et al. Pre-flight verification of the CubeSat attitude control system for the QUBE mission[C]// Small Satellites Systems and Services Symposium (4S 2024). SPIE, 2025, 13546: 1793-1803. |
| [24] | Speqtral. Pioneers of space-based quantum communication[EB/OL]. [2025-05-12]. https://speqtralquantum.com/technology/satellite-qkd. |
| [25] | DLR Portal. QUBE-II: quantum key distribution with CubeSat[EB/OL]. [2025-05-12]. https://www.dlr.de/en/kn/research-transfer/projects/qkd-quantum-technology-for-secure-communication/qube-ii-quantum-key-distribution-with-cubesat. |
| [26] | European Space Agency. Eagle-1[EB/OL]. [2025-05-12]. https://www.esa.int/Applications/Connectivity_and_Secure_Communications/Eagle-1. |
| [27] | 徐海涛, 陈诺. 跨半球连亚非!中国首次实现上万公里星地量子通信[EB/OL]. (2025-03-20)[2025-05-12]. https://www.cas.cn/cm/202503/t20250320_5059370.shtml. |
| [28] | Canadian Space Agency. Quantum encryption and science satellite (QEYSSat)[EB/OL]. [2025-05-12]. https://www.asc-csa.gc.ca/eng/satellites/qeyssat.asp. |
| [29] | TIAN X H, YANG R, LIU H Y, et al. Experimental demonstration of drone-based quantum key distribution[J]. Physical Review Letters, 2024, 133(20): 200801. |
| [30] | LIU Y, ZHANG W J, JIANG C, et al. Experimental twin-field quantum key distribution over 1 000 km fiber distance[J]. Physical Review Letters, 2023, 130(21): 210801. |
| [31] | LI W, ZHANG L, TAN H, et al. High-rate quantum key distribution exceeding 110 Mb s-1[J]. Nature Photonics, 2023, 17(5): 416-421. |
| [32] | ZHANG L, LI W, PAN J, et al. Experimental mode-pairing quantum key distribution surpassing the repeaterless bound[J]. Physical Review X, 2025, 15(2): 021037. |
| [33] | 郝俊慧. 今年底,超十座头部城市将建成量子城域网[EB/OL]. (2024-10-10)[2025-05-12]. https://mp.weixin.qq.com/s/53vx9S2IpnvClKg3fvkxpQ. |
| [34] | 中电信量子. 我国量子密码技术实现双重抗量子新突破[EB/OL]. (2025-05-16)[2025-05-18]. https://mp.weixin.qq.com/s/iSWzqccEVg9c199pYyYcoA. |
| [35] | REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73. |
| [36] | CHEN Y A, ZHANG Q, CHEN T Y, et al. An integrated space-to-ground quantum communication network over 4 600 kilometres[J]. Nature, 2021, 589(7841): 214-219. |
| [37] | GYONGYOSI L, IMRE S. Advances in the quantum internet[J]. Communications of the ACM, 2022, 65(8): 52-63. |
| [38] | Global Quantum Intelligence. The European Quantum Communication Infrastructure (EuroQCI)[EB/OL]. (2024-09-19)[2025-05-18]. https://quantumcomputingreport.com/the-european-quantum-communication-infrastructure-euroqci/. |
| [39] | IMDA. National quantum safe network plus[EB/OL]. (2025-04-17)[2025-05-18]. https://www.imda.gov.sg/about-imda/emerging-technologies-and-research/national-quantum-safe-network-plus. |
| [40] | QIN H, HAW J Y, DUAN X, et al. The national quantum-safe network in Singapore[C]// The 49th European Conference on Optical Communications (ECOC 2023). IET, 2023: 1294-1297. |
| [41] | ELLIOTT C, COLVIN A, PEARSON D, et al. Current status of the DARPA quantum network[C]// Quantum Information and Computation III. SPIE, 2005, 5815: 138-149. |
| [42] | Quantum Xchange. Quantum Xchange to build first quantum network in U.S. offering “unbreakable encryption”[EB/OL]. (2018-06-26)[2025-05-18]. https://quantumxc.com/media-coverage/quantum-xchange-to-build-first-quantum-network-in-us-offering-unbreakable-encryption/. |
| [43] | 中国科学院科技战略咨询研究院. 美国DARPA启动量子增强网络计划[EB/OL]. (2023-11-20)[2025-05-18]. http://www.casisd.cn/zkcg/ydkb/kjqykb/2023/kjqykb2308/202311/t20231120_6934975.html. |
| [44] | The U.S Department of Energy. Report of the DOE Quantum Internet Blueprint Workshop[EB/OL]. (2020-02-05)[2025-05-18]. https://www.energy.gov/sites/prod/files/2020/07/f76/QuantumWkshpRpt20FINAL_Nav_0.pdf. |
| [45] | LIU J L, LUO X Y, YU Y, et al. Creation of memory-memory entanglement in a metropolitan quantum network[J]. Nature, 2024, 629(8012): 579-585. |
| [46] | Boeing. Q4S[EB/OL]. [2025-05-18]. https://www.boeing.com/quantum#introduction. |
| [47] | National Quantum Initiative Advisory Committee. Quantum networking: findings and recommendations for growing American leadership[EB/OL]. 2024[2025-05-18]. https://www.quantum.gov/wp-content/uploads/2024/09/NQIAC-Report-Quantum-Networking.pdf. |
| [48] | Government of Canada. Canada’s national quantum strategy[EB/OL]. (2024-12-03)[2025-05-18]. https://ised-isde.canada.ca/site/national-quantum-strategy/en/canadas-national-quantum-strategy. |
| [49] | Government of Canada. Overview of quantum 2030[EB/OL]. (2023-03-27)[2025-05-18]. https://www.canada.ca/en/department-national-defence/corporate/reports-publications/overview-quantum-2030.html. |
| [50] | JENNEWEIN T, SIMON C, FOUGÈRES A, et al. QEYSSat 2.0: white paper on satellite-based quantum communication missions in Canada[J]. Canadian Journal of Physics, 2024, 103(4): 328-376. |
| [1] | 冯宝, 赵子岩, 卞宇翔, 吕超, 王开创. 面向新型电力系统的量子保密通信技术及应用[J]. 信息通信技术与政策, 2025, 51(7): 33-42. |
| [2] | 沈文慧, 关堂兵, 杨楠. 量子加密OTN技术演进及部署方案研究[J]. 信息通信技术与政策, 2025, 51(7): 54-61. |
| [3] | 魏宝琳, 米鹏伟, 杭涛, 邹霄, 朱雁平. 5G电子政务外网量子保密通信与抗量子加密应用研究[J]. 信息通信技术与政策, 2025, 51(7): 62-69. |
| [4] | 岳斌, 许勃. 量子密钥分发网络管理系统研究[J]. 信息通信技术与政策, 2025, 51(2): 81-86. |
| [5] | 李圆智, 王松, 陈伟, 汪伟, 欧阳亨威, 严宇航. 量子密钥分发与量子身份认证技术的融合应用分析*[J]. 信息通信技术与政策, 2025, 51(1): 83-95. |
| [6] | 赖俊森, 赵文玉, 张海懿. 量子计算信息安全威胁与应对策略分析[J]. 信息通信技术与政策, 2024, 50(7): 24-29. |
| [7] | 武林娜, 宋恺, 王淞鹤. 生成式人工智能对个人信息安全的挑战及应对策略[J]. 信息通信技术与政策, 2024, 50(1): 13-18. |
| [8] | 张一辰, 边一铭, 王恒, 喻松, 徐兵杰, 郭弘. 面向城域接入的连续变量量子密钥分发技术*[J]. 信息通信技术与政策, 2023, 49(7): 53-59. |
| [9] | 邱成杰, 卞宇翔, 柳旭, 冯宝. 量子保密通信技术在电费缴费系统中的应用研究[J]. 信息通信技术与政策, 2023, 49(3): 84-90. |
| [10] | 张杨, 张艳, 彭华熹, 陈磊, 李邦灵, 马爱良. 基础电信企业开展商用密码应用安全性评估工作的思考与建议[J]. 信息通信技术与政策, 2023, 49(1): 52-57. |
| [11] | 王玮, 曹京, 程赓, 李雪莹. 降低自动化决策对个人信息安全影响的研究[J]. 信息通信技术与政策, 2022, 48(8): 52-58. |
| [12] | 程明, 张成良, 唐建军. 量子保密通信应用与技术探讨[J]. 信息通信技术与政策, 2022, 48(7): 14-19. |
| [13] | 陈晖. 量子密钥服务中台及其应用前景[J]. 信息通信技术与政策, 2022, 48(3): 86-91. |
| [14] | 肖勤, 程广明. 中国量子通信专利布局与发展现状分析*[J]. 信息通信技术与政策, 2022, 48(12): 88-96. |
| [15] | 杨申申, 卢青, 卢振国, 李永民. 连续变量量子密钥分发数据后处理研究进展[J]. 信息通信技术与政策, 2021, 47(7): 8-16. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
您是第 位访问者
版权所有 © 2020 信息通信技术与政策 备案序号: 京ICP备09013372号
地址: 北京市海淀区花园北路52号 电话: 010-62300192 传真: 010-68027707 E-mail: ictp@caict.ac.cn
