信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (6): 21-26.doi: 10.12267/j.issn.2096-5931.2025.06.004

专题:AI 驱动能源变革 上一篇    下一篇

人工智能在固态储氢材料中的综合应用

Applications of AI in solid-state hydrogen storage materials

岳锦疆1, 宁庭勇2   

  1. 1.同济大学汽车学院,上海市 201800
    2.云赛智联股份有限公司,上海市 201210
  • 收稿日期:2025-04-22 出版日期:2025-06-25 发布日期:2025-07-04
  • 作者简介:
    岳锦疆 同济大学汽车学院硕士研究生在读,主要研究方向为氢燃料电池、固态储氢系统、人工智能在综合能源系统优化领域的应用
    宁庭勇 云赛智联股份有限公司技术分公司架构师,主要研究方向为云计算、网络安全、人工智能等

YUE Jinjiang1, NING Tingyong2   

  1. 1. College of Automotive Studies, Tongji University, Shanghai 201800, China
    2. INESA Intelligent Tech Inc., Shanghai 201210, China
  • Received:2025-04-22 Online:2025-06-25 Published:2025-07-04

摘要:

氢能作为清洁能源,其高效存储与技术利用备受关注。近年来,固态储氢材料因其高安全性和高储氢密度成为研究热点。系统综述了各类金属氢化物等储氢材料的研究进展,重点分析了人工智能(Artificial Intelligence,AI)与储氢材料设计、性能优化和应用的机遇与挑战。此外,探讨了机器学习在固态储氢材料整条产业链中的潜在作用。最后,展望了低成本、高性能固态储氢材料的未来发展方向,以促进人工智能技术应用于氢能产业加速其商业化进程。

关键词: 固态储氢材料, 人工智能筛选算法, 强化学习, 模型预测

Abstract:

Hydrogen energy, as a clean energy, has attracted much attention for its efficient storage and utilization technologies. In recent years, solid-state hydrogen storage materials have become a research hotspot due to their high safety and high hydrogen storage density. This paper systematically reviews the recent advances in hydrogen storage materials including various metal hydrides, focusing on the challenges of material design, performance optimization, and applications. In addition, it explores the potential role of machine learning in the industry chain of hydrogen storage materials. Finally, the future direction of low-cost and high-performance solid-state hydrogen storage materials is envisioned to facilitate the application of artificial intelligence (AI) technologies in the hydrogen energy industry and accelerate its commercialization.

Key words: solid-state hydrogen storage materials, AI screening algorithms, reinforcement learning, model prediction

中图分类号: