信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2025, Vol. 51 ›› Issue (8): 42-49.doi: 10.12267/j.issn.2096-5931.2025.08.006

专题:人工智能+ 上一篇    下一篇

科研智能关键技术研究

Research on key technologies of artificial intelligence for research and development

董昊1, 周景才2   

  1. 1.中国信息通信研究院人工智能研究所,北京 100191
    2.华为技术有限公司,深圳 518000
  • 收稿日期:2025-06-30 出版日期:2025-08-25 发布日期:2025-09-02
  • 作者简介:
    董昊,中国信息通信研究院人工智能研究所工程师,长期从事科研智能、人工智能基础设施、人工智能工程化等相关研究工作
    周景才,华为技术有限公司欧洲标准与产业发展部首席专家,教授级高级工程师,博士,主要研究方向为人工智能产业发展政策、标准及规划

DONG Hao1, ZHOU Jingcai2   

  1. 1. Artificial Intelligence Institute, China Academy of Information and Communications Technology, Beijing 100191, China
    2. Huawei Technologies Co., Ltd., Shenzhen 518000, China
  • Received:2025-06-30 Online:2025-08-25 Published:2025-09-02

摘要:

“人工智能+科研”正重塑科学研究与产业研发范式,开启科研方法论的新纪元。围绕科研智能技术体系,系统梳理科研数据、科研算力、科研模型、科研智能体及自动化实验室五大核心领域,分析其定义内涵、发展现状及未来趋势,探讨人工智能如何驱动科研模式向自主智能演进。研究表明,科研数据治理、异构算力管理、专用及多模态科研模型、智能体自主科研能力和自动化实验室广域协作的深度融合,将支撑形成“想象—执行”闭环的智能科研新范式,为科技成果的高效产出与产业转化提供强劲动力。

关键词: AI, 科研智能, AI4R&D, 科学智能, AI4S

Abstract:

The integration of Artificial Intelligence (AI) with research and development is reshaping the paradigms of both scientific inquiry and industrial research and development, heralding a new era of research methodologies. This paper systematically examines five core technological areas within the "AI for research and development" framework, namely research data, research computing power, research models, research agents, and automated laboratories. It explores their definitions, connotations, current development status, and future trends, while discussing how AI drives scientific research toward autonomous intelligence. The findings indicate that the convergence of research data governance, heterogeneous computing resource management, specialized and multimodal research models, the autonomous research capabilities of intelligent agents, and the wide-area collaboration of automated laboratories collectively supports a novel intelligent research paradigm characterized by an "imagination-execution" closed loop. This paradigm provides robust momentum for accelerating scientific discoveries and facilitating their industrial translation.

Key words: AI, artificial intelligence for research and development, AI4R&D, artificial intelligence for science, AI4S

中图分类号: