| [1] |
MICHAEL R G, DOMINIC A T, BRADLEY P K, et al. Head to head comparison of arrhythmia discrimination performance of subcutaneous and transvenous ICD arrhythmia detection algorithms: the START study[J]. Journal of Cardiovascular Electrophysiology, 2012, 23(4): 359-366.
|
| [2] |
SUN F T, MORRELL M J, WHAREN R E. Responsive cortical stimulation for the treatment of epilepsy[J]. Neurotherapeutics, 2008, 5(1): 68-74.
doi: 10.1016/j.nurt.2007.10.069
pmid: 18164485
|
| [3] |
MACHACEK Z, GABZDYL M, MICHNA V. Direct digital synthesis based - function generator with digital signal modulations[J]. IFAC Proceedings Volumes, 2010, 43(24):189-194.
|
| [4] |
NIKOLIĆ S N, BATI Ć V, PANI Ć B, et al. Field-programmable gate array based arbitrary signal generator and oscilloscope for use in slow light and storage of light experiments[J]. Review of Scientific Instruments, 2013, 84(6): 063108
|
| [5] |
GRINSTEIN J, BLANCO P J, TORII R, et al. The virtual patient simulator[J]. JACC: Basic to Translational Science, 2025: S2452302X2500018X.
|
| [6] |
AI W, PATEL N D, ROOP P S, et al. Cardiac electrical modeling for closed-loop validation of implantable devices[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(2): 536-544.
|
| [7] |
DONNELLAN S, HILL I R, BOWDEN W, et al. A scalable arbitrary waveform generator for atomic physics experiments based on field-programmable gate array technology[J]. Review of Scientific Instruments, 2019, 90(4): 043101.
|
| [8] |
ERBE D.R, VALENTIN B, MIHAI B. Achieve accurate RF testing with a raspberry Pi-based DDS signal generator[EB/OL]. 2023[2025-02-01]. https://www.analog.com/en/resources/analog-dialogue/articles/achieve-accurate-rf-testing-with-a-raspberry-pi-based-dds-signal-generator.
|
| [9] |
王东锋, 黎映相. 0-100 mV精密电压源的设计与仿真[J]. 微型机与应用, 2012, 31(10): 31-33.
|
| [10] |
SUN J, OUYANG P. Arbitrary waveform generator and total distortion evaluation[C]// Information Computing and Applications, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,392: 95-104.
|
| [11] |
王佳荣. 基于DDS技术的信号发生器设计[D]. 长春: 吉林大学, 2015.
|
| [12] |
袁雪尧. 基于TMS320F2812可调参数心电信号发生器的设计方案[J]. 军事通信技术, 2010, 31(2): 59-62.
|
| [13] |
REN L M, XUE X, ZHENG Y B. The design of high precision arbitrary waveform generator based on dds technology and FPGA[J]. Journal of Physics: Conference Series, 2021, 1820(1): 012010.
|
| [14] |
XIAO Y, HUANG L, ZHAO W, et al. The design of a software defined arbitrary waveform generator[C]// 2019 IEEE AUTOTESTCON, National Harbor, MD, USA: IEEE, 2019: 1-6.
|
| [15] |
LIU K, TIAN S, GUO G, et al. Precisely synchronous and cascadable multi-channel arbitrary waveform generator[J]. Review of Scientific Instruments, 2017, 88(3): 035110.
|
| [16] |
何乐生. 基于DDS算法的12导联心电信号发生器设计[J]. 仪器仪表学报, 2010, 31(2): 275-280.
|
| [17] |
吴玉娟, 梁晶, 王志刚. 采用EFM32单片机的心电信号发生器的设计[J]. 电子产品世界, 2013, 20(8):72-73.
|
| [18] |
MARTINEK R, KELNAR M, KOUDELKA P, et al. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator[J]. Physiological Measurement, 2016, 37(2): 238-256.
doi: 10.1088/0967-3334/37/2/238
pmid: 26799770
|
| [19] |
任晓林. 基于EEG反馈的多模式记忆巩固刺激设备研制[D]. 西安: 西安电子科技大学, 2019.
|
| [20] |
WANG L, XU L, ZHOU S, et al. Design and implementation of a pulse wave generator based on Windkessel model using field programmable gate array technology[J]. Biomedical Signal Processing and Control, 2017, 36: 93-101.
|
| [21] |
HALDER R S, BASUMATARY B, SAHANI A. Development of a low-cost, compact, wireless, 16 - channel biopotential data acquisition, signal conditioning and arbitrary waveform stimulator[J]. Biomedical Physics & Engineering Express, 2024, 10(2): 025002.
|
| [22] |
KOLBL F, BORNAT Y, CASTELLI J, et al. IC-based neuro-stimulation environment for arbitrary waveform generation[J]. Electronics, 2021, 10(15): 1867.
|
| [23] |
HACI D, LIU Y, CONSTANDINOU T G. 32-channel ultra-low-noise arbitrary signal generation platform for biopotential emulation[C]// 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA: IEEE, 2017: 1-4.
|
| [24] |
POWELL M P, ANSO J, GILRON R, et al. NeuroDAC: an open-source arbitrary biosignal waveform generator[J]. Journal of Neural Engineering, 2021, 18(1): 016010.
|
| [25] |
胡碧荣, 王晓东, 王浩冲, 等. 面向脑机接口测试的高精度脑电信号模拟发生系统设计与实现[J]. 信息通信技术与政策, 2024, 50(5): 34-40.
|
| [26] |
鲸扬科技. SEEG 100_脑电图测试[EB/OL]. 2021[2025-02-10]. https://www.whaleteq.com/zh-cn/blog/6/zh-cn/product/22/23-blood-pressure-monitor-testing/zh-cn/product/2/14-eeg-testing/view15-seeg-100.
|
| [27] |
Fluke Biomedical. Patient simulators[EB/OL]. 2020[2025-02-10]. https://www.flukebiomedical.com/products/biomedical-test-equipment/patient-simulators.
|
| [28] |
D’APUZZO M, D’ARCO M, LICCARDO A, et al. Modeling DAC output waveforms[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11): 2854-2862.
|
| [29] |
MUNSON J. Understanding high speed DAC testing and evaluation[EB/OL]. 2006[2025-03-10]. https://www.analog.com/media/en/technical-documentation/application-notes/an-928.pdf.
|
| [30] |
KESTER W. Evaluating high speed DAC performance[EB/OL]. 2008[2025-03-10]. https://www.analog.com/media/en/training-seminars/tutorials/mt-013.pdf.
|
| [31] |
罗军, 刘焱, 王小强, 等. 低压差线性电压调整器噪声电压测试方法[J]. 中国测试, 2017, 43(11): 22-25.
|
| [32] |
梁国杰, 彭先洪, 何共建, 等. 低频超小电压校准中衰减器的设计[J]. 计量技术, 2016(7): 57-62.
|