| [1] |
GOODMAN J W, LEONBERGER F J, KUNG S Y, et al. Optical interconnections for VLSI systems[J]. Proceedings of the IEEE, 1984, 72(7): 850-866.
|
| [2] |
GOODMAN J W, DIAS A R, WOODY L M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms[J]. Optics Letters, 1978, 2(1): 1-3.
pmid: 19680386
|
| [3] |
BUSE K, ADIBI A, PSALTIS D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 1998, 393(6686): 665-668.
|
| [4] |
PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and complexity[M]. New York: Courier Corporation, 1998.
|
| [5] |
越民义, 李荣珩. 组合优化导论(第2版)[M]. 北京: 科学出版社, 2014.
|
| [6] |
HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1982, 79(8): 2554-2558.
|
| [7] |
AMIT D J, GUTFREUND H. Spin-glass models of neural networks[J]. Physical Review A, 1985, 32(2):1007-1018.
pmid: 9896156
|
| [8] |
AGLIARI E, BARRA A, ANTONI A D, et al. Parallel retrieval of correlated patterns: from hopfield networks to boltzmann machines[J]. Neural Networks, 2013, 38: 52-63.
doi: 10.1016/j.neunet.2012.11.010
pmid: 23246601
|
| [9] |
SOURLAS N. Spin-glass models as error-correcting codes[J]. Nature, 1989, 339(6227):693-695.
|
| [10] |
ANDREW L. Ising formulations of many NP problems[J]. arXiv Preprint, arXiv:1302.5843, 2014. DOI:10.3389/fphy.2014.00005.
|
| [11] |
PARIHAR A, SHUKLA N, JERRY M, et al. Vertex coloring of graphs via phase dynamics of coupled oscillatory networks[J]. Scientific Reports, 2017, 7(1): 1-11.
|
| [12] |
INUI Y, GUNATHILAKA M D S H, KAKO S, et al. Control of amplitude homogeneity in coherent Ising machines with artificial zeeman terms[J]. Communications Physics, 2022, 5(1): 154-161.
|
| [13] |
LELEU T, YAMAMOTO Y, UTSUNOMIYA S, et al. Combinatorial optimization using dynamical phase transitions in driven-dissipative systems[J]. Physical Review E, 2017, 95(2): 022118. DOI:10.1103/PhysRevE.95.022118.
|
| [14] |
LU B, GAO Y P, WEN K, et al. Combinatorial optimization solving by coherent Ising machines based on spiking neural networks[J]. arXiv Preprint, arXiv:2208. 07502, 2023. DOI:10.48550/arXiv.2208.07502.
|
| [15] |
LELEU T, YAMAMOTO Y, MCMAHON P L, et al. Destabilization of local minima in analog spin systems by correction of amplitude heterogeneity[J]. Physical Review Letters, 2019, 122(4): 040607.
|
| [16] |
BÖHM F, VAERENBERGH T V, VERSCHAFFELT G, et al. Order-of-magnitude differences in computational performance of analog Ising machines induced by the choice of nonlinearity[J]. Communications Physics, 2021, 4(1): 149.
|
| [17] |
WANG Z, MARANDI A, WEN K, et al. Coherent Ising machine based on degenerate optical parametric oscillators[J]. Physical Review A, 2013, 88(6): 063853.
|
| [18] |
MARANDI A, WANG Z, TAKATA K, et al. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine[J]. Nature Photonics, 2014, 8(12): 937-942.
|
| [19] |
TAKATA K, MARANDI A, HAMERLY R, et al. A 16-bit coherent Ising machine for one-dimensional ring and cubic graph problems[J]. Scientific Reports, 2016, 6(1): 34089.
|
| [20] |
MCMAHON P L, MARANDI A, HARIBARA Y, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections[J]. Science, 2016, 354(6312): 614-617.
pmid: 27811274
|
| [21] |
INAGAKI T, HARIBARA Y, IGARASHI K, et al. A coherent Ising machine for 2000-node optimization problems[J]. Science, 2016, 354(6312): 603-606.
pmid: 27811271
|
| [22] |
HONJO T, SONOBE T, INABA K, et al. 100 000-spin coherent Ising machine[J]. Science Advances, 2021, 7(40): eabh0952.
|
| [23] |
HAMERLY R, INAGAKI T, MCMAHON P L, et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer[J]. Science Advances, 2019, 5(5): eaau0823.
|
| [24] |
HASEGAWA M, ITO H, TAKESUE H, et al. Optimization by neural networks in the coherent Ising machine and its application to wireless communication systems[J]. IEICE Transactions on Communications, 2021, 104(3): 210-216.
|
| [25] |
KURASAWA K, HASHIMOTO K, LI A, et al. A high-speed channel assignment algorithm for dense IEEE 802.11 systems via coherent Ising machine[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1682-1686.
|
| [26] |
HUANG Y. Quantum computing for MIMO beam selection problem: model and optical experimental solution[C]. 2023 IEEE Global Communications Conference, 2023:5463-5468.
|
| [27] |
OTSUKA T, LI A, TAKESUE H, et al. High-speed resource allocation algorithm using a coherent Ising machine for noma systems[J]. IEEE Transactions on Vehicular Technology, 2023, 73(1):707.
|
| [28] |
BÖHM F, INAGAKI T, INABA K, et al. Understanding dynamics of coherent ising machines through simulation of large-scale 2D Ising models[J]. Nature Communications, 2018, 9(1): 5020.
|
| [29] |
TAKESUE H, YAMADA Y, INABA K, et al. Observing a phase transition in a coherent Ising machine[J]. Physical Review Applied, 2023, 19(3): L031001.
|
| [30] |
NG E, ONODERA T, KAKO S, et al. Efficient sampling of ground and low-energy Ising spin configurations with a coherent Ising machine[J]. Physical Review Research, 2022, 4(1): 013009.
|
| [31] |
MIZUNO Y, KOMATSUZAKI T. Finding optimal pathways in chemical reaction networks using Ising machines[J]. Physical Review Research, 2024, 6(1): 013115.
|
| [32] |
TERAYAMA K, SUMITA M, TAMURA R, et al. Black-box optimization for automated discovery[J]. Accounts of Chemical Research, 2021, 54(6): 1334-1346.
|
| [33] |
MAO Z, MATSUDA Y, TAMURA R, et al. Chemical design with GPU-based Ising machines[J]. Digital Discovery, 2023, 2(4):1098-1103.
|
| [34] |
GENIN S N, RYABINKIN I G, IZMAYLOV A F. Quantum chemistry on quantum annealers[J]. arXiv Preprint, arXiv:1901.04715, 2019. DOI:10.48550/arXiv.1901.04715.
|
| [35] |
ZHA J Y, SU J Q. Encoding molecular docking for quantum computers[J]. Journal of Chemical Theory and Computation, 2023, 19(24): 9018-9024.
doi: 10.1021/acs.jctc.3c00943
pmid: 38090816
|
| [36] |
ROOS, KELLY R. An Ising spin state explanation for financial asset allocation[J]. Physica a Statistical Mechanics & Its Applications, 2016, 445(1):112-116.
|
| [37] |
CIVIDINO D, WESTPHAL R, SORNETTE D. Multiasset financial bubbles in an agent-based model with noise traders’ herding described by an n-vector Ising model[J]. Physical Review Research, 2023, 5(1):013009.
|
| [38] |
TATSUMURA K, HIDAKA R, NAKAYAMA J, et al. Real-time trading system based on selections of potentially profitable, uncorrelated, and balanced stocks by np-hard combinatorial optimization[J]. IEEE Access, 2023,11:120023.
|