信息通信技术与政策 ›› 2024, Vol. 50 ›› Issue (1): 19-31.doi: 10.12267/j.issn.2096-5931.2024.01.004
宋天乐1, 蔺琛皓1, 高书馨1, 赵竣毅2, 周亚杰1, 纪英帅3, 杨明慧4, 沈超1
收稿日期:
2023-12-28
出版日期:
2024-01-25
发布日期:
2024-02-01
通讯作者:
蔺琛皓,西安交通大学网络空间安全学院特聘研究员,长期从事人工智能安全、智能身份安全等方面的研究工作
作者简介:
基金资助:
SONG Tianle1, LIN Chenhao1, GAO Shuxin1, ZHAO Junyi2, ZHOU Yajie1, JI Yingshuai3, YANG Minghui4, SHEN Chao1
Received:
2023-12-28
Online:
2024-01-25
Published:
2024-02-01
摘要:
随着移动智能终端的发展和普及,更多用户在智能手机、平板等移动终端上进行支付、转账、存储个人信息等活动。为了提高用户使用移动智能终端的安全性和便利性,目前移动智能终端身份认证的发展趋向于持续认证。首先,回顾了现有基于移动智能终端的身份认证工作;其次,整理了目前主流的性能评估指标和产业界应用;最后,对持续身份认证在移动智能终端中亟待解决的问题以及发展趋势进行了总结和探讨。
中图分类号:
宋天乐, 蔺琛皓, 高书馨, 赵竣毅, 周亚杰, 纪英帅, 杨明慧, 沈超. 基于移动智能终端交互行为的持续身份认证技术综述*[J]. 信息通信技术与政策, 2024, 50(1): 19-31.
SONG Tianle, LIN Chenhao, GAO Shuxin, ZHAO Junyi, ZHOU Yajie, JI Yingshuai, YANG Minghui, SHEN Chao. Continuous identity authentication of mobile intelligent terminal users via interactive behavior[J]. Information and Communications Technology and Policy, 2024, 50(1): 19-31.
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Asadullah等 | 传感器数据 | Distance | 10 | FAR:1.46%,FRR:6.87% |
Lee等 | 传感器数据 | KRR | 20 | ACC:92%,FAR:7.5% |
Li等 | 传感器数据 | SVM | 100 | FAR:7.65%,FRR:9.01% |
Ehatisham等 | 传感器数据 | SVM | 10 | ACC:97.95% |
Li等 | 传感器数据 | SVDD | 100 | FAR:2.85%,FRR:0.74% |
Shen等 | 传感器数据 | HMM | 102 | FAR:3.98%,FRR:5.03% |
Amini等 | 传感器数据 | LSTM | 47 | ACC:96.7% |
Hu等 | 传感器数据 | SVM | 100 | ACC:87.14%,EER:2.3% |
Fereidooni等 | 传感器数据 | CNN | 45 | FAR:2.3%,FRR:5.7% |
表1 基于传感器数据的持续身份认证
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Asadullah等 | 传感器数据 | Distance | 10 | FAR:1.46%,FRR:6.87% |
Lee等 | 传感器数据 | KRR | 20 | ACC:92%,FAR:7.5% |
Li等 | 传感器数据 | SVM | 100 | FAR:7.65%,FRR:9.01% |
Ehatisham等 | 传感器数据 | SVM | 10 | ACC:97.95% |
Li等 | 传感器数据 | SVDD | 100 | FAR:2.85%,FRR:0.74% |
Shen等 | 传感器数据 | HMM | 102 | FAR:3.98%,FRR:5.03% |
Amini等 | 传感器数据 | LSTM | 47 | ACC:96.7% |
Hu等 | 传感器数据 | SVM | 100 | ACC:87.14%,EER:2.3% |
Fereidooni等 | 传感器数据 | CNN | 45 | FAR:2.3%,FRR:5.7% |
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Frank等 | 触屏交互数据 | SVM、KNN | 20 | EER:2%~3% |
Antal等 | 触屏交互数据、传感器数据 | Bayes Net、KNN、RF | 40 | EER:0.2% |
Leyfer等 | 触屏交互数据 | RF、Gradient Boosting | 14 | AUC:96% |
Pozo等 | 触屏交互数据 | GMM with UBM | 190 | EER:15%~22% |
Song等 | 触屏交互数据 | FRN | 161 | EER:2% |
Cheng等 | 触屏交互数据、传感器数据 | RF、ET、SVM、KNN | 100 | ACC:98.3% |
Lin等 | 触屏交互数据、传感器数据 | CNN、DNN | 1 875 | EER:4.38%,AUC:99.2% |
Miao等 | 触屏交互数据、传感器数据 | LSTM、DNN | 2 100 | EER:16.4% |
表2 基于触屏交互数据的持续身份认证
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Frank等 | 触屏交互数据 | SVM、KNN | 20 | EER:2%~3% |
Antal等 | 触屏交互数据、传感器数据 | Bayes Net、KNN、RF | 40 | EER:0.2% |
Leyfer等 | 触屏交互数据 | RF、Gradient Boosting | 14 | AUC:96% |
Pozo等 | 触屏交互数据 | GMM with UBM | 190 | EER:15%~22% |
Song等 | 触屏交互数据 | FRN | 161 | EER:2% |
Cheng等 | 触屏交互数据、传感器数据 | RF、ET、SVM、KNN | 100 | ACC:98.3% |
Lin等 | 触屏交互数据、传感器数据 | CNN、DNN | 1 875 | EER:4.38%,AUC:99.2% |
Miao等 | 触屏交互数据、传感器数据 | LSTM、DNN | 2 100 | EER:16.4% |
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Kang等 | 击键数据 | R+A Measure | 35 | EER:1.9% |
Hwang等 | 击键数据 | Distance | 25 | EER:4% |
Inguanez等 | 击键数据 | MLP | 32 | ACC:94.81%,FAR:6.33% |
Buriro等 | 击键数据、传感器数据 | RF | 85 | TAR:99.35% |
Wu等 | 击键数据、传感器数据 | RF | 142 | ACC:96.85%,FPR:4.01% |
Hriez等 | 击键数据 | RF | 42 | ACC:94.26% |
表3 基于击键交互数据的持续身份认证
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Kang等 | 击键数据 | R+A Measure | 35 | EER:1.9% |
Hwang等 | 击键数据 | Distance | 25 | EER:4% |
Inguanez等 | 击键数据 | MLP | 32 | ACC:94.81%,FAR:6.33% |
Buriro等 | 击键数据、传感器数据 | RF | 85 | TAR:99.35% |
Wu等 | 击键数据、传感器数据 | RF | 142 | ACC:96.85%,FPR:4.01% |
Hriez等 | 击键数据 | RF | 42 | ACC:94.26% |
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Wang等 | 步态数据 | KNN | 20 | EER:3.54%,ACC:87.5% |
Gafurov等 | 步态数据 | KNN | 21 | EER:5.00%,ACC:85.7% |
Thang等 | 步态数据 | SVM | 11 | ACC:92.7% |
Hoang等 | 步态数据 | SVM | 14 | TAR:91.33% |
Kork等 | 步态数据 | Distance | 50 | EER:0.17%~2.28% |
Li等 | 行为分析数据 | Rule-based/RBF | 42 | ACC:94.26% |
Cao等 | 行为分析数据 | HMM | 26 / 99 | EER:30%/16.16% |
表4 基于其他交互行为的持续身份认证
研究者 | 采集的数据 | 模型方法 | 数据集规模 | 试验结果 |
---|---|---|---|---|
Wang等 | 步态数据 | KNN | 20 | EER:3.54%,ACC:87.5% |
Gafurov等 | 步态数据 | KNN | 21 | EER:5.00%,ACC:85.7% |
Thang等 | 步态数据 | SVM | 11 | ACC:92.7% |
Hoang等 | 步态数据 | SVM | 14 | TAR:91.33% |
Kork等 | 步态数据 | Distance | 50 | EER:0.17%~2.28% |
Li等 | 行为分析数据 | Rule-based/RBF | 42 | ACC:94.26% |
Cao等 | 行为分析数据 | HMM | 26 / 99 | EER:30%/16.16% |
[1] | KHAN W Z, XIANG Y, AALSALEM M Y, et al. Mobile phone sensing systems: a survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1):402-427. DOI:10.1109/SURV.2012.031412.000. |
[2] | ANDERSON J P. Computer security threat monitoring and surveillance[EB/OL]. 2023[2023-12-28]. https://www.researchgate.net/publication/239587894_Computer_Security_Threat_Monitoring_and_Surveillance. |
[3] | ZHAO Z M, AHN G J, HU H X. Picture gesture authentication: empirical analysis, automated attacks, and scheme evaluation[J]. Acm Transactions on Information and System Security, 2015, 17(4):1-37. DOI:10.1145/2701423. |
[4] |
ACAR T, BELENKIY M, KUEPCUE A. Single password authentication[J]. Computer Networks, 2013, 57(13):2597-2614.
doi: 10.1016/j.comnet.2013.05.007 URL |
[5] | SHEILA M, FAIZAL M A, SHAHRIN S. Dimension of mobile security model: mobile user security threats and awareness[J]. International Journal of Mobile Learning and Organisation, 2015, 9(1):66-85. DOI:10.1504/ijmlo.2015.069718. |
[6] | AVIV A J, GIBSON K, MOSSOP E, et al. Smudge attacks on smartphone touch screens[J]. USENIX Association, 2010:1-7. DOI:doi:http://dx.doi.org/. |
[7] | AMIN R, GABER T, ELTAWEEL G, et al. Biometric and traditional mobile authentication techniques: overviews and open issues[J]. Intelligent Systems Reference Library, 2014, 70(2). DOI:10.1007/978-3-662-43616-5_16. |
[8] | SHUKLA D, PHOHA V V. Stealing passwords by observing hands movement[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(12):3086-3101. DOI:10.1109/TIFS.2019.2911171. |
[9] | MALKIN N, HARBACH M, DE LUCA A, et al. The anatomy of smartphone unlocking[J]. GetMobile: Mobile Computing and Communications Review, 2016, 20(3):42-46. |
[10] | BONTRAGER P, TOGELIUS J, MEMON N. Deepmasterprint: generating fingerprints for presentation attacks[J]. arXiv Preprint, arXiv:1705.07386, 2017. |
[11] |
ERDOGMUS N, MARCEL S. Spoofing face recognition with 3D masks[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(7):1084-1097.
doi: 10.1109/TIFS.2014.2322255 URL |
[12] |
CZAJKA A, BOWYER K W, KRUMDICK M, et al. Recognition of image-orientation-based iris spoofing[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(9):2184-2196.
doi: 10.1109/TIFS.2017.2701332 URL |
[13] |
GUPTA R, SEHGAL P. A survey of attacks on iris biometric systems[J]. International Journal of Biometrics, 2016, 8(2):145-178.
doi: 10.1504/IJBM.2016.077833 URL |
[14] | FERRERO R, GANDINO F, MONTRUCCHIO B, et al. On gait recognition with smartphone accelerometer[C]// 2015 4th Mediterranean Conference on Embedded Computing. Budva: IEEE Press, 2015:368-373. |
[15] | FANTANA A L, RAMACHANDRAN S, SCHUNCK C H, et al. Movement based biometric authentication with smartphones[C]// 2015 International Carnahan Conference on Security Technology. Taipei: IEEE Press, 2015:235-239. |
[16] | LAGHARI A, MEMON Z A. Biometric authentication technique using smartphone sensor[C]// 2016 13th International Bhurban Conference on Applied Sciences and Technology. Islamabad: IEEE Press, 2016:381-384. |
[17] | LEE W H, LEE R. Implicit sensor-based authentication of smartphone users with smartwatch[J]. ACM, 2017. DOI:10.1145/2948618.2948627. |
[18] |
LI Y, HU H, ZHOU G. Using data augmentation in continuous authentication on smartphones[J]. IEEE Internet of Things Journal, 2018, 6(1):628-640.
doi: 10.1109/JIOT.2018.2851185 URL |
[19] |
EHATISHAM-UL-HAQ M, AZAM M A, NAEEM U, et al. Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing[J]. Journal of Network and Computer Applications, 2018, 109:24-35.
doi: 10.1016/j.jnca.2018.02.020 URL |
[20] |
LI Y, ZOU B, DENG S, et al. Using feature fusion strategies in continuous authentication on smartphones[J]. IEEE Internet Computing, 2020, 24(2):49-56.
doi: 10.1109/MIC.2020.2971447 URL |
[21] |
SHEN C, LI Y, CHEN Y, et al. Performance analysis of multi-motion sensor behavior for active smartphone authentication[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(1):48-62.
doi: 10.1109/TIFS.2017.2737969 URL |
[22] | AMINI S, NOROOZI V, PANDE A, et al. Deepauth: a framework for continuous user re-authentication in mobile apps[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018:2027-2035. |
[23] | HU H, LI Y, ZHU Z, et al. CNNAuth: continuous authentication via two-stream convolutional neural networks[C]// 2018 IEEE International Conference on Networking, Architecture and Storage. Chongqing: IEEE Press, 2018:1-9. |
[24] | FEREIDOONI H, KöNIG J, RIEGER P, et al. Authenti Sense: a scalable behavioral biometrics authentication scheme using few-shot learning for mobile platforms[J]. arXiv Preprint, arXiv:2302.02740v1, 2023. |
[25] | ZHANG Y, HU W, XU W, et al. Continuous authentication using eye movement response of implicit visual stimuli[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 1(4):1-22. DOI:10.1145/3161410. |
[26] |
AGAC S, INCEL O D. User authentication and identification on smart glasses with motion sensors[J]. SN Computer Science, 2023, 4(6):1-14.
doi: 10.1007/s42979-022-01425-1 |
[27] | MONDAL S, BOURS P. Swipe gesture based continuous authentication for mobile devices[C]// 2015 International Conference on Biometrics. Phuket: IEEE Press, 2015:458-465. |
[28] | NOHARA T, UDA R. Personal identification by flick input using self-organizing maps with acceleration sensor and gyroscope[J]. ACM, 2016:1-6. DOI:10.1145/2857546.2857605. |
[29] | FRANK M, BIEDERT R, MA E, et al. Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication[J]. IEEE Transactions on Information Forensics and Security, 2012, 8(1):136-148. DOI:10.1109/TIFS.2012.2225048. |
[30] | ANTAL M, SZABó L Z. Biometric authentication based on touchscreen swipe patterns[J]. Procedia Technology, 2016, 22:862-869. DOI:10.1016/j.protcy.2016.01.061. |
[31] | LEYFER K, SPIVAK A. Continuous user authentication by the classification method based on the dynamic touchscreen biometrics[C]// 2019 24th Conference of Open Innovations Association (FRUCT). Moscow: IEEE Press, 2019:228-234. |
[32] | POZO A, FIERREZ J, MARTINEZ-DIAZ M, et al. Exploring a statistical method for touchscreen swipe biometrics[C]// 2017 International Carnahan Conference on Security Technology. Madrid: IEEE Press, 2017:1-4. |
[33] | SONG Y, CAI Z. Integrating handcrafted features with deep representations for smartphone authentication[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(1):1-27. |
[34] |
BEVAN C, FRASER D S. Different strokes for different folks? Revealing the physical characteristics of smartphone users from their swipe gestures[J]. International Journal of Human-Computer Studies, 2016, 88:51-61.
doi: 10.1016/j.ijhcs.2016.01.001 URL |
[35] | CHENG Y, JI X, LI X, et al. Identifying child users via touchscreen interactions[J]. ACM Transactions on Sensor Networks, 2020, 16(4):1-25. |
[36] | LIN C, SONG T, MIAO Y, et al. ChildShield: an implicit and continuous child identification system on smartphones[J]. IEEE Transactions on Dependable and Secure Computing, 2023. |
[37] | ZHANG L F, YU M Z, CHEN T, et al. Auxiliary training: towards accurate and robust models[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE Press, 2020:369-378. |
[38] | MIAO Y, TIAN Q, LIN C, et al. Learning heuristically-selected and neurally-guided feature for age group recognition using unconstrained smartphone interaction[C]// Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. IJCAI, 2023:3029-3037. |
[39] | MONROSE F, RUBIN A. Authentication via keystroke dynamics[C]// CCS’97: Proceedings of the 4th ACM Conference on Computer and Communications Security. New York: ACM, 1997:48-56. |
[40] | SHEN T P, JIN T A B, SHIGANG Y. A survey of keystroke dynamics biometrics[EB/OL]. (2013-11-03)[2023-12-28]. www.hindawi.com/journals/tswj/2013/408280/. |
[41] | BHATT S, SANTHANAM T. Keystroke dynamics for biometric authentication: a survey[C]// International Conference on Pattern Recognition. Salem: IEEE Press, 2013:1-7. DOI:10.1109/ICPRIME.2013.6496441. |
[42] | CILIA D, INGUANEZ F. Multi-model authentication using keystroke dynamics for smartphones[C]// 2018 IEEE 8th International Conference on Consumer Electronics-Berlin. Berlin:IEEE Press, 2018:1-6. DOI:10.1109/ICCE-Berlin.2018.8576226. |
[43] |
JOYCE R, GUPTA G. Identity authentication based on keystroke latencies[J]. Communications of the ACM, 1990, 33(2):168-176.
doi: 10.1145/75577.75582 URL |
[44] | LIN C, HE J, SHEN C, et al. CrossBehaAuth: cross-scenario behavioral biometrics authentication using keystroke dynamics[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(3):2314-2327. DOI:10.1109/TDSC.2022.3179603. |
[45] |
KANG P, CHO S. Keystroke dynamics-based user authentication using long and free text strings from various input devices[J]. Information Sciences, 2015, 308:72-93.
doi: 10.1016/j.ins.2014.08.070 URL |
[46] | HWANG S S, CHO S, PARK S. Keystroke dynamics-based authentication for mobile devices[J]. Computers & Security, 2009, 28(1-2):85-93. DOI:10.1016/j.cose.2008.10.002. |
[47] | INGUANEZ F, AHMADI S. Securing smartphones via typing heat maps[C]// 2016 IEEE 6th International Conference on Consumer Electronics-Berlin. Berlin: IEEE Press, 2016:193-197. |
[48] | BURIRO A, CRISPO B, GUPTA S, et al. Dialerauth: a motion-assisted touch-based smartphone user authentication scheme[C]// Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. New York: ACM, 2018: 267-276. DOI:10.1145/3176258.3176318. |
[49] | WU J S, LIN W C, LIN C T, et al. Smartphone continuous authentication based on keystroke and gesture profiling[C]// 2015 International Carnahan Conference on Security Technology. Taipei: IEEE Press, 2015:191-197. |
[50] | HRIEZ S, OBEID N, AWAJAN A. User authentication on smartphones using keystroke dynamics[C]// Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems. New York: ACM, 2019:1-4. |
[51] |
WANG L, NING H, TAN T, et al. Fusion of static and dynamic body biometrics for gait recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(2):149-158.
doi: 10.1109/TCSVT.2003.821972 URL |
[52] | GAFUROV D, SNEKKENES E. Gait recognition using wearable motion recording sensors[J]. EURASIP Journal on Advances in Signal Processing, 2009, 2009:1-16. |
[53] | THANG H M, VIET V Q, THUC N D, et al. Gait identification using accelerometer on mobile phone[C]// 2012 International Conference on Control, Automation and Information Sciences. Saigon: IEEE Press, 2012:344-348. |
[54] |
HOANG T, NGUYEN T, LUONG C, et al. Adaptive cross-device gait recognition using a mobile accelerometer[J]. Journal of Information Processing Systems, 2013, 9(2):333-348.
doi: 10.3745/JIPS.2013.9.2.333 URL |
[55] | KORK S K A, GOWTHAMI I, SAVATIER X, et al. Biometric database for human gait recognition using wearable sensors and a smartphone[C]// 2017 2nd International Conference on Bio-engineering for Smart Technologies. Paris: IEEE Press, 2017:1-4. |
[56] |
LI F, CLARKE N, PAPADAKI M, et al. Active authentication for mobile devices utilising behaviour profiling[J]. International Journal of Information Security, 2014, 13:229-244.
doi: 10.1007/s10207-013-0209-6 URL |
[57] |
CAO H, CHANG K C C. Nonintrusive smartphone user verification using anonymized multimodal data[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(3):479-492.
doi: 10.1109/TKDE.2018.2828309 URL |
[1] | 解谦, 张睿, 刘红. 移动智能终端基于神经网络的人工智能技术与应用[J]. 信息通信技术与政策, 2019, 45(12): 45-50. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 691
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 518
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
您是第 420128 位访问者
版权所有 © 2020 信息通信技术与政策 备案序号: 京ICP备09013372号
地址: 北京市海淀区花园北路52号 电话: 010-62300192 传真: 010-68027707 E-mail: ictp@caict.ac.cn