| [1] |
KIMBLE H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.
doi: 10.1038/nature07127
|
| [2] |
WEHNER S, ELKOUSS D, HANSON R. Quantum internet: a vision for the road ahead[J]. Science, 2018, 362(6412): eaam9288.
doi: 10.1126/science.aam9288
URL
|
| [3] |
WEI S H, JING B, ZHANG X Y, et al. Towards real-world quantum networks: a review[J]. Laser & Photonics Reviews, 2022, 16(3): 2100219.
|
| [4] |
GISIN N, THEW R. Quantum communication[J]. Nature Photonics, 2007, 1(3): 165-171.
doi: 10.1038/nphoton.2007.22
|
| [5] |
HU X M, GUO Y, LIU B H, et al. Progress in quantum teleportation[J]. Nature Reviews Physics, 2023: 1-15.
|
| [6] |
周强, 韦晨, 汪相如, 等. 光通信波段多频道量子通道的实验研究[J]. 中国基础科学, 2019, 21(1): 7-11.
|
| [7] |
KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1).
|
| [8] |
GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4): 222-229.
doi: 10.1038/nphoton.2011.35
|
| [9] |
LIU Y, ZHANG W J, JIANG C, et al. Experimental twin-field quantum key distribution over 1 000 km fiber distance[J]. Physical Review Letters, 2023, 130(21): 210801.
doi: 10.1103/PhysRevLett.130.210801
URL
|
| [10] |
SIMON C, DE RIEDMATTEN H, AFZELIUS M, et al. Quantum repeaters with photon pair sources and multimode memories[J]. Physical Review Letters, 2007, 98(19): 190503.
doi: 10.1103/PhysRevLett.98.190503
URL
|
| [11] |
BENNETT C H, BRASSARD G, POPESCU S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Physical Review Letters, 1996, 76(5): 722.
pmid: 10061534
|
| [12] |
DUR W, BRIEGEL H J, CIRAC J I, et al. Quantum repeaters based on entanglement purification[J]. Physical Review A, 1999, 59(1): 169.
doi: 10.1103/PhysRevA.59.169
URL
|
| [13] |
LVOVSKY A I, SANDERS B C, TITTEL W. Optical quantum memory[J]. Nature Photonics, 2009, 3(12): 706-714.
doi: 10.1038/nphoton.2009.231
|
| [14] |
WILK T, WEBSTER S C, KUHN A, et al. Single-atom single-photon quantum interface[J]. Science, 2007, 317(5837): 488-490.
pmid: 17588899
|
| [15] |
KUZMICH A, BOWEN W, BOOZER A, et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles[J]. Nature, 2003, 423(6941): 731-734.
doi: 10.1038/nature01714
|
| [16] |
张雪莹, 袁晨智, 魏世海, 等. 稀土掺杂固态量子存储研究进展[J]. 低温物理学报, 2019, 41(5): 315-334.
|
| [17] |
李城, 敬波, 廖金宇, 等. 通信波段稀土离子掺杂固态量子存储进展[J]. 激光技术, 2022, 46(1): 45-57.
|
| [18] |
JIANG M H, XUE W, HE Q, et al. Quantum storage of entangled photons at telecom wavelengths in a crystal[J]. ArXiv Preprint ArXiv:2212.12898, 2022.
|
| [19] |
BOLLAR K J, IMAMOGLU A, HARRI S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991(66): 2593-2596.
|
| [20] |
HEINZE G, HUBRICH C, HALFMANN T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.
doi: 10.1103/PhysRevLett.111.033601
URL
|
| [21] |
AFZELIUS M, SIMON C, DE RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review A, 2009, 79(5): 052329.
doi: 10.1103/PhysRevA.79.052329
URL
|
| [22] |
LIU D C, LI P Y, ZHU T X, et al. On-demand storage of photonic qubits at telecom wavelengths[J]. Physical Review Letters, 2022, 129(21): 210501.
doi: 10.1103/PhysRevLett.129.210501
URL
|
| [23] |
DAMON V, BONAROTA M, LOUCHET-CHAUVET A, et al. Revival of silenced echo and quantum memory for light[J]. New Journal of Physics, 2011, 13(9): 093031.
doi: 10.1088/1367-2630/13/9/093031
URL
|
| [24] |
LIU C, ZHOU Z Q, ZHU T X, et al. Reliable coherent optical memory based on a laser-written waveguide[J]. Optica, 2020, 7(2): 192-197.
doi: 10.1364/OPTICA.379166
URL
|
| [25] |
MA Y Z, JIN M, CHEN D L, et al. Elimination of noise in optically rephased photon echoes[J]. Nature Communications, 2021, 12(1): 4378.
doi: 10.1038/s41467-021-24679-4
|
| [26] |
周宗权. 量子存储式量子计算机与无噪声光子回波[J]. 物理学报, 2022, 71(7): 60-63.
|
| [27] |
SAGLAMYUREK E, JIN J, VERMA V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre[J]. Nature Photonics, 2015, 9(2): 83-87.
doi: 10.1038/nphoton.2014.311
|
| [28] |
JIN J, SAGLAMYUREK E, VERMA V, et al. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits[J]. Physical Review Letters, 2015, 115(14): 140501.
doi: 10.1103/PhysRevLett.115.140501
URL
|
| [29] |
SAGLAMYUREK E, GRIMAU PUIGIBERT M, ZHOU Q, et al. A multiplexed light-matter interface for fibre-based quantum networks[J]. Nature Communications, 2016, 7(1): 11202.
doi: 10.1038/ncomms11202
|
| [30] |
WEI S H, JING B, ZHANG X Y, et al. Storage of 1 650 modes of single photons at telecom wavelength[J]. ArXiv Preprint ArXiv:2209.00802, 2022.
|
| [31] |
SAGLAMYUREK E, SINCLAIR N, JIN J, et al. Broadband waveguide quantum memory for entangled photons[J]. Nature, 2011, 469(7331): 512-515.
doi: 10.1038/nature09719
|
| [32] |
SINCLAIR N, SAGLAMYUREK E, MALLAHZADEH H, et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control[J]. Physical Review Letters, 2014, 113(5): 053603.
doi: 10.1103/PhysRevLett.113.053603
URL
|
| [33] |
ASKARANI M F, LUTZ T, VERMA V B, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056.
doi: 10.1103/PhysRevApplied.11.054056
URL
|
| [34] |
SERI A, LAGO-RIVERA D, LENHARD A, et al. Quantum storage of frequency-multiplexed heralded single photons[J]. Physical Review Letters, 2019, 123(8): 080502.
doi: 10.1103/PhysRevLett.123.080502
URL
|
| [35] |
CORRIELLI G, SERI A, MAZZERA M, et al. Integrated optical memory based on laser-written waveguides[J]. Physical Review Applied, 2016, 5(5): 054013.
doi: 10.1103/PhysRevApplied.5.054013
URL
|
| [36] |
SERI A, CORRIELLI G, LAGO-RIVERA D, et al. Laser-written integrated platform for quantum storage of heralded single photons[J]. Optica, 2018, 5(8): 934-941.
doi: 10.1364/OPTICA.5.000934
URL
|
| [37] |
ZHU T X, LIU C, ZHENG L, et al. Coherent optical memory based on a laser-written on-chip waveguide[J]. Physical Review Applied, 2020, 14(5): 054071.
doi: 10.1103/PhysRevApplied.14.054071
URL
|
| [38] |
LIU C, ZHU T X, SU M X, et al. On-demand quantum storage of photonic qubits in an on-chip waveguide[J]. Physical Review Letters, 2020, 125(26): 260504.
doi: 10.1103/PhysRevLett.125.260504
URL
|
| [39] |
ZHU T X, LIU C, JIN M, et al. On-demand integrated quantum memory for polarization qubits[J]. Physical Review Letters, 2022, 128(18): 180501.
doi: 10.1103/PhysRevLett.128.180501
URL
|
| [40] |
ZHANG X Y, ZHANG B, WEI S H, et al. Telecom-band integrated multimode photonic quantum memory[J]. Science Advances, in press, 2023.
|
| [41] |
ZHONG T, KINDEM J M, MIYAZONO E, et al. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals[J]. Nature Communications, 2015, 6(1): 8206.
doi: 10.1038/ncomms9206
|
| [42] |
ZHONG T, KINDEM J M, ROCHMAN J, et al. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles[J]. Nature Communic-ations, 2017, 8(1): 14107.
|
| [43] |
ZHONG T, KINDEM J M, BARTHOLOMEW J G, et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval[J]. Science, 2017, 357(6358): 1392-1395.
doi: 10.1126/science.aan5959
pmid: 28860208
|
| [44] |
CRAICIU I, LEI M, ROCHMAN J, et al. Nanophotonic quantum storage at telecommunication wavelength[J]. Physical Review Applied, 2019, 12(2): 024062.
doi: 10.1103/PhysRevApplied.12.024062
URL
|
| [45] |
CRAICIU I, LEI M, ROCHMAN J, et al. Multifunctional on-chip storage at telecommunication wavelength for quantum networks[J]. Optica, 2021, 8(1): 114-121.
doi: 10.1364/OPTICA.412211
URL
|