| [1] |
ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 50510.
|
| [2] |
WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(18): 180501.
doi: 10.1103/PhysRevLett.127.180501
URL
|
| [3] |
ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460.
doi: 10.1126/science.abe8770
URL
|
| [4] |
DENG Y H, GONG S Q, GU Y C, et al. Solving graph problems using gaussian boson sampling[J]. Physical Review Letters, 2023, 130(19): 190601.
doi: 10.1103/PhysRevLett.130.190601
URL
|
| [5] |
GOTTESMAN D. An introduction to quantum error correction and fault-tolerant quantum computation[C]// Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, 2010(68):13-58.
|
| [6] |
JIA Z, FU Y, CAO Z, et al. Superconducting and silicon-based semiconductor quantum computers: a review[J]. IEEE Nanotechnology Magazine, 2022, 16(4):9-10.
doi: 10.1109/MNANO.2022.3195077
URL
|
| [7] |
ZHAO Y, YE Y, HUANG H-L, et al. Realization of an error-correcting surface code with superconducting qubits[J]. Physical Review Letters, 2022, 129(3):030501.
doi: 10.1103/PhysRevLett.129.030501
URL
|
| [8] |
ACHARYA R, ALEINER I, ALLEN R, et al. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 2023, 614(7949): 676-681.
doi: 10.1038/s41586-022-05434-1
|
| [9] |
GOUZIEN E, SANGOUARD N. Factoring 2048-bit RSA integers in 177 days with 13-436 qubits and a multimode memory[J]. Physical Review Letters, 2021, 127(14): 09749.
|
| [10] |
YAN B, TAN Z, WEI S, et al. Factoring integers with sublinear resources on a superconducting quantum processor[J]. ArXiv Preprint ArXiv:221212372, 2022.
|
| [11] |
PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2.
|
| [12] |
BINOSI T C, COLIN DE VERDIèRE G, CORNI S, et al. European quantum computing & simulation infrastructure[R], 2022.
|
| [13] |
UNDERTAKING E H P C J. Selection of six sites to host the first European quantum computers[Z], 2022.
|
| [14] |
FEYNMAN R P. Simulating physics with computers[M]. Feynman and Computation CRC Press, 1982.
|
| [15] |
SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, 1994: 124-134.
|
| [16] |
GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, 1996: 212-219.
|
| [17] |
BENNETT C H, BERNSTEIN E, BRASSARD G, et al. Strengths and weaknesses of quantum computing[J]. SIAM Journal on Computing, 1997, 26(5): 1510.
doi: 10.1137/S0097539796300933
URL
|
| [18] |
CORRIGAN-GIBBS H, WU D J, BONEH D. Quantum operating systems[C]// Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017: 76-81.
|
| [19] |
YANG C H, LEON R C C, HWANG J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin[J]. Nature, 2020, 580(7803): 350-354.
doi: 10.1038/s41586-020-2171-6
|
| [20] |
PETIT L, RUSS M, EENINK H, et al. High-fidelity two-qubit gates in silicon above one Kelvin[J]. ArXiv Preprint ArXiv:2007.09034, 2020.
|
| [21] |
ZHANG G, LIN H, WANG C. Acalibration-free 12. 8-16.5 GHz cryogenic CMOS VCO with 202dBc/Hz FoM for classic-quantum interface[C]// 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2023: 512-514.
|
| [22] |
XUE X, PATRA B, VAN DIJK J P G, et al. CMOS-based cryogenic control of silicon quantum circuits[J]. Nature, 2021, 593(7858): 205-210.
doi: 10.1038/s41586-021-03469-4
|
| [23] |
CHARBON E. Cryo-CMOS circuits and systems for scalable quantum computing, in 2017 IEEE international solid-state circuits conference (ISSCC)[Z], 2017.
|
| [24] |
KANG K, MINN D, BAE S, et al. A cryo-CMOS controller IC with fully integrated frequency generators for superconducting qubits[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2022(65): 362-364.
|
| [25] |
FRANK D J, CHAKRABORTY S, TIEN K, et al. A cryo-CMOS low-power semi-autonomous qubit state controller in 14nm FinFET technology[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2022(65): 360-362.
|
| [26] |
BARDIN J C, WHITE T, GIUSTINA M, et al. Design and characterization of a 28-nm Bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K[J]. IEEE Journal of Solid-State Circuits, 2019, 54(11): 3043-3060.
doi: 10.1109/JSSC.4
URL
|
| [27] |
PARK J S, SUBRAMANIAN S, LAMPERT L, et al. A fully integrated cryo-CMOS SoC for qubit control in quantum computers capable of state manipulation, readout and high-speed gate pulsing of spin qubits in Intel 22nm FFL FinFET technology[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2021(64): 208-210.
|
| [28] |
GUO Y, LI Y, HUANG W, et al. A polar-modulation-based cryogenic qubit state controller in 28nm bulk CMOS[C]// 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2023: 508-510.
|
| [29] |
PATRA B, VAN DIJK J P G, SUBRAMANIAN S, et al. A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers[C]// 2020 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2020: 304-306.
|
| [30] |
GONZALEZ-ZALBA M F, DE FRANCESCHI S, CHARBON E, et al. Scaling silicon-based quantum computing using CMOS technology[J]. Nature Electronics, 2021, 4(12): 872-884.
doi: 10.1038/s41928-021-00681-y
|
| [31] |
NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantum processors[J]. Nature Electronics, 2023: 1-7.
|
| [32] |
KANNAN B, ALMANAKLY A, SUNG Y, et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics[J]. Nature Physics, 2023: 1-7.
|
| [33] |
AKHTAR M, BONUS F, LEBRUN-GALLAGHER F, et al. A high-fidelity quantum matter-link between ion-trap microchip modules[J]. Nature Communications, 2023, 14(1).
|
| [34] |
KUMAR A, SULEYMANZADE A, STONE M, et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms[J]. Nature, 2023, 615(7953): 614-619.
doi: 10.1038/s41586-023-05740-2
|
| [35] |
CRAWFORD O, VAN STRAATEN B, WANG D, et al. Efficient quantum measurement of pauli operators in the presence of finite sampling error[J]. Quantum, 2021, 5.
|
| [36] |
CRUISE J R, GILLESPIE N I, REID B. Practical quantum computing: the value of local computation[J]. ArXiv Preprint ArXiv:2009.08513, 2020.
|
| [37] |
ENDER K, HOEVEN R, NIEHOFF B E, et al. Parity quantum optimization: compiler[J]. ArXiv Preprint ArXiv: 2015.06233, 2021.
|
| [38] |
FELLNER M, ENDER K, TER HOEVEN R, et al. Parity quantum optimization: benchmarks[J]. ArXiv Preprint ArXiv: 2015.06240, 2021.
|
| [39] |
FELLNER M, MESSINGER A, ENDER K, et al. Applications of universal parity quantum computation[J]. Physical Review A, 2022, 106(4): 042442.
doi: 10.1103/PhysRevA.106.042442
URL
|
| [40] |
FELLNER M, MESSINGER A, ENDER K, et al. Universal parity quantum computing[J]. Physical Review Letters, 2022, 129(18): 180503.
doi: 10.1103/PhysRevLett.129.180503
URL
|
| [41] |
窦星磊, 刘磊, 陈岳涛. 面向超导量子计算机的程序映射技术研究[J]. 计算机研究与发展, 2021, 58(9):1856-1874.
|
| [42] |
KONG W, WANG J, HAN Y, et al. Origin pilot: a quantum operating system for effecient usage of quantum resources[J]. ArXiv Preprint ArXiv:2105.10730, 2021.
|
| [43] |
CHEN Z Y, GUO G P. Qrunes: high-level language for quantum-classical hybrid programming[J]. ArXiv Preprint ArXiv:1901.08340, 2019.
|
| [44] |
MCKINSEY. Quantum technology monitor[R], 2023.
|
| [45] |
MEUER H, STROHMAIER E, DONGARRA J, et al. The 61st edition of the TOP500[Z], 2023.
|
| [46] |
中国信息通信研究院. 数据中心白皮书[R], 2022.
|