| [1] |
中国科学院网信工作网. 欧盟正式启动量子技术旗舰计划[EB/OL]. (2025-03-01)[2025-05-12]. https://ecas.cas.cn/xxkw/kbcd/201115_127114/ml/xxhzlyzc/201811/t20181101_4937625.html.
|
| [2] |
中国科学院量子信息与量子科技创新研究院. 印度启动国家量子任务,投入7.26亿美元[EB/OL]. (2024-05-24)[2025-05-12]. https://www.quantumcas.ac.cn/2024/0530/c24874a642460/page.htm.
|
| [3] |
ICV Tank. 2025 global quantum sensing industry development outlook[EB/OL]. (2025-03-01)[2025-05-12]. https://www.icvtank.com/newsinfo/1007661.html.
|
| [4] |
BEEHLER R E, GLAZE D J. The performance and capability of cesium beam frequency standards at the national bureau of standards[J]. IEEE Transactions on Instrumentation and Measurement, 1966, 15(1/2): 48-55.
|
| [5] |
LI R, GIBBLE K, SZYMANIEC K. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts[J]. Metrologia, 2011, 48(5): 283.
|
| [6] |
WEYERS S, GERGINOV V, NEMITZ N, et al. Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2[J]. Metrologia, 2012, 49(1): 82.
|
| [7] |
BLOOM B J, NICHOLSON T L, WILLIAMS J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506(7486): 71-75.
|
| [8] |
MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87-90.
|
| [9] |
LU B K, SUN Z, YANG T, et al. Improved evaluation of BBR and collisional frequency shifts of NIM-Sr2 with 7.2 × 10-18 total uncertainty[J]. Chinese Physics Letters, 2022, 39(8): 080601.
|
| [10] |
HUANG Y, ZHANG B, ZENG M, et al. Liquid-nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18[J]. Physical Review Applied, 2022, 17(3): 034041.
|
| [11] |
CUI K, CHAO S, SUN C, et al. Evaluation of the systematic shifts of a 40Ca+ - 27Al+ optical clock[J]. arXiv Preprint, arXiv: 2012. 05496, 2022.
|
| [12] |
ZHANG C, OOI T, HIGGINS J S, et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock[J]. Nature, 2024, 633(8028): 63-70.
|
| [13] |
SHEN Q, GUAN J Y, REN J G, et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 2022, 610(7933): 661-666.
|
| [14] |
人民网. 世界首台量子电流互感器在合肥挂网运行[EB/OL]. (2022-09-14)[2025-05-12]. http://ah.people.com.cn/n2/2022/0914/c227767-40123837.html.
|
| [15] |
人民网. 国内首座量子应用示范变电站建成投用[EB/OL]. (2024-11-29)[2025-05-12]. http://ah.people.com.cn/n2/2024/1129/c358428-41059593.html.
|
| [16] |
李天研. 世界首套特高压直流量子电流传感器投运[EB/OL]. (2025-04-09)[2025-05-12]. https://paper.people.com.cn/zgnyb/pad/content/202504/14/content_30068716.html.
|
| [17] |
央广网. 新能源汽车崛起有何深意[EB/OL]. (2024-03-09)[2025-05-12].https://auto.cnr.cn/yc/20240309/t20240309_526621575.shtml.
|
| [18] |
SNE Research. Global LIB ESS market expected to reach 235 GWh in 2024, a 27% YoY growth[EB/OL].(2024-02-05)[2025-05-12]. https://www.sneresearch.com/en/insight/release_view/219/page/96?s_cat=|&s_keyword=#ac_id.
|
| [19] |
HATANO Y, SHIN J, TANIGAWA J, et al. High-precision robust monitoring of charge/discharge current over a wide dynamic range for electric vehicle batteries using diamond quantum sensors[J]. Scientific Reports, 2022, 12(1): 13991.
doi: 10.1038/s41598-022-18106-x
pmid: 36068253
|
| [20] |
吴德伟, 苗强, 何思璇, 等. 量子传感的导航应用研究现状与展望[J]. 空军工程大学学报:自然科学版, 2021, 22(6): 67-76.
|
| [21] |
STRAND S, LUTTER W, STRASBURGER J F, et al. Low-cost fetal magnetocardiography: a comparison of superconducting quantum interference device and optically pumped magnetometers[J]. Journal of the American Heart Association, 2019, 8(16): e013436.
|
| [22] |
BROSER P J, KNAPPE S, KAJAL D S, et al. Optically pumped magnetometers for magneto-myography to study the innervation of the hand[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(11): 2226-2230.
|
| [23] |
SAKAKI K, HOSHINO Y, KAWABATA S, et al. Evaluation of neural activity by magnetospinography with 3D sensors[J]. Clinical Neurophysiology, 2020, 131(6): 1252-1266.
doi: S1388-2457(20)30093-6
pmid: 32299009
|
| [24] |
SANDER T, JODKO-WŁADZIŃSKA A, HARTWIG S, et al. Optically pumped magnetometers enable a new level of biomagnetic measurements[J]. Advanced Optical Technologies, 2020, 9(5): 247-251.
|
| [25] |
HAO N, ZHANG J X J. Magnetic nanotechnology for circulating tumor biomarkers screening: rational design, microfluidics integration and applications[J]. Biomicrofluidics, 2019, 13(5): 051501.
|
| [26] |
CHEN S, LI W, ZHENG X, et al. Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond[J]. Proceedings of the National Academy of Sciences, 2022, 119(5): e2118876119.
|
| [27] |
WISSBERG S, RONEN M, OREN Z, et al. Sensitive readout for microfluidic high-throughput applications using scanning SQUID microscopy[J]. Scientific Reports, 2020, 10(1): 1573.
doi: 10.1038/s41598-020-58307-w
pmid: 32005843
|
| [28] |
YANG K, CHEN H, KONG X, et al. Weakly damped SQUID gradiometer with low crosstalk for magnetocardiography measurement[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(8): 1-5.
|
| [29] |
TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816.
|
| [30] |
TRABALDO E, ARPAIA R, ARZEO M, et al. Transport and noise properties of YBCO nanowire based nanoSQUIDs[J]. Superconductor Science and Technology, 2019, 32(7): 073001.
|
| [31] |
TIERNEY T M, HOLMES N, MELLOR S, et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199:598-608.
doi: S1053-8119(19)30455-0
pmid: 31141737
|
| [32] |
FAGALY R L. Superconducting quantum interference device instruments and applications[J]. Review of Scientific Instruments, 2006, 77(10): 1-15.
|
| [33] |
FALEY M I, DAMMERS J, MASLENNIKOV Y V, et al. High-Tc SQUID biomagnetometers[J]. Superconductor Science and Technology, 2017, 30(8): 083001.
|
| [34] |
VRBA J, ROBINSON S E. SQUID sensor array configurations for magnetoencephalography applications[J]. Superconductor Science and Technology, 2002, 15(9): R51.
|
| [35] |
BORNA A, CARTER T R, COLOMBO A P, et al. Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system[J]. PLOS One, 2020, 15(1): e0227684.
|
| [36] |
PELLICCIONE M, JENKINS A, OVARTCHAIYAPONG P, et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor[J]. Nature Nanotechnology, 2016, 11(8): 700-705.
doi: 10.1038/nnano.2016.68
pmid: 27136130
|
| [37] |
WU Y, JELEZKO F, PLENIO M B, et al. Diamond quantum devices in biology[J]. Angewandte Chemie International Edition, 2016, 55(23): 6586-6598.
|
| [38] |
BARRY J F, TURNER M J, SCHLOSS J M, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): 14133-14138.
|
| [39] |
LIU C F, LEONG W H, XIA K, et al. Ultra-sensitive hybrid diamond nanothermometer[J]. National Science Review, 2020, 8(5): nwaa194.
|
| [40] |
ZHANG Q, YIN J, YAN Y, et al. Biocompatible nanotomography of tightly focused light[J]. Nano Letters, 2022, 22(5): 1851-1857.
|
| [41] |
ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(1): 012002.
|
| [42] |
HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728.
|
| [43] |
李红雨, 曹诚, 李凤婷, 等. 航空、航海重力和重力梯度在海洋、未知陆地战略勘探的发展[J]. 地球物理学进展, 2019, 34(1): 316-325.
|
| [44] |
朱栋, 高世腾, 朱欣欣, 等. 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021, 36(5): 480-489.
doi: 10.11867/j.issn.1001-8166.2021.034
|
| [45] |
STRAY B, LAMB A, KAUSHIK A, et al. Quantum sensing for gravity cartography[J]. Nature, 2022, 602(7898): 590-594.
|
| [46] |
LENG Y, CHEN Y, LI R, et al. Measurement of the earth tides with a diamagnetic-levitated micro-oscillator at room temperature[J]. Physical Review Letters, 2024, 132(12): 123601.
|
| [47] |
ZHAI C, WANG J, ZHOU J, et al. Airborne absolute gravity measurements based on quantum gravimeter[J]. Acta Physica Sinica, 2025, 74(7): 070302.
|