| [1] |
JOSHI A, RIENKS M, THEOFILATOS K, et al. Systems biology in cardiovascular disease: a multiomics approach[J]. Nature Reviews Cardiology, 2021, 18(5):313-330.
doi: 10.1038/s41569-020-00477-1
pmid: 33340009
|
| [2] |
PALLA G, FISCHER D S, REGEV A, et al. Spatial components of molecular tissue biology[J]. Nature Biotechnology, 2022, 40(3):308-318.
doi: 10.1038/s41587-021-01182-1
pmid: 35132261
|
| [3] |
SADYBEKOV A V, KATRITCH V. Computational approaches streamlining drug discovery[J]. Nature, 2023, 616(7958):673-685.
|
| [4] |
HERMAN D, GOOGIN C, LIU X, et al. Quantum computing for finance[J]. Nature Reviews Physics, 2023, 5(8):450-465.
|
| [5] |
RIETSCHE R, DREMEL C, BOSCH S, et al. Quantum computing[J]. Electronic Markets, 2022, 32(4):2525-2536.
|
| [6] |
LADD T D, JELEZKO F, LAFLAMME R, et al. Quantum computers[J]. Nature, 2010, 464(7285):45-53.
|
| [7] |
RAJAK A, SUZUKI S, DUTTA A, et al. Quantum annealing: an overview[J]. Philosophical Transactions of the Royal Society A, 2023, 381(2241):20210417.
|
| [8] |
YU S, ZHONG Z P, FANG Y, et al. A universal programmable gaussian boson sampler for drug discovery[J]. Nature Computational Science, 2023, 3(10):839-848.
doi: 10.1038/s43588-023-00526-y
pmid: 38177757
|
| [9] |
YAMAMOTO Y, LELEU T, GANGULI S, et al. Coherent ising machines: quantum optics and neural network perspectives[J]. Applied Physics Letters, 2020, 117(16).
|
| [10] |
樊晨瑞, 袁为, 马寅, 等. 相干伊辛计算的研究与应用进展[J]. 信息通信技术与政策, 2024, 50(7):1-12.
|
| [11] |
HASEGAWA M, ITO H, TAKESUE H, et al. Optimization by neural networks in the coherent Ising machine and its application to wireless communication systems[J]. IEICE Transactions on Communications, 2021, 104(3):210-216.
|
| [12] |
WANG Z, MARANDI A, WEN K, et al. Coherent Ising machine based on degenerate optical parametric oscillators[J]. Physical Review A, 2013, 88(6):063853.
|
| [13] |
MCMAHON P L, MARANDI A, HARIBARA Y, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections[J]. Science, 2016, 354(6312):614-617.
pmid: 27811274
|
| [14] |
MARANDI A, WANG Z, TAKATA K, et al. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine[J]. Nature Photonics, 2014, 8(12):937-942.
|
| [15] |
HAMERLY R, INAGAKI T, MCMAHON P L, et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer[J]. Science advances, 2019, 5(5):eaau0823.
|
| [16] |
IKUTA T, INAGAKI T, INABA K, et al. Continuous and long-term stabilization of degenerate optical parametric oscillators for large-scale optical hybrid computers[J]. Optics Express, 2020, 28(26):38553-38566.
doi: 10.1364/OE.412078
pmid: 33379423
|
| [17] |
HONJO T, SONOBE T, INABA K, et al. 100,000-spin coherent Ising machine[J]. Science advances, 2021, 7(40):eabh0952.
|
| [18] |
HAMERLY R, INAGAKI T, MCMAHON P L, et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer[J]. Science advances, 2019, 5(5):eaau0823.
|
| [19] |
BOHACEK R S, MCMARTIN C, GUIDA W C. The art and practice of structure-based drug design: a molecular modeling perspective[J]. Medicinal research reviews, 1996, 16(1):3-50.
doi: 10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
pmid: 8788213
|
| [20] |
ZHA J, SU J, LI T, et al. Encoding molecular docking for quantum computers[J]. Journal of Chemical Theory and Computation, 2023, 19(24):9018-9024.
doi: 10.1021/acs.jctc.3c00943
pmid: 38090816
|
| [21] |
HERNANDEZ M, LIANG G G, LINVILL K, et al. A quantum-inspired method for three-dimensional ligand-based virtual screening[J]. Journal of Chemical Information and Modeling, 2019, 59(10):4475-4485.
doi: 10.1021/acs.jcim.9b00195
pmid: 31625746
|
| [22] |
OLIVECRONA M, BLASCHKE T, ENGKVIST O, et al. Molecular de-novo design through deep reinforcement learning[J]. Journal of cheminformatics, 2017,9:1-14.
|
| [23] |
AJAGEKAR A, YOU F. Molecular design with automated quantum computing-based deep learning and optimization[J]. NPJ Computational Materials, 2023, 9(1):143.
|
| [24] |
TUCS A, BERENGER F, YUMOTO A, et al. Quantum annealing designs nonhemolytic antimicrobial peptides in a discrete latent space[J]. ACS Medicinal Chemistry Letters, 2023, 14(5):577-582.
doi: 10.1021/acsmedchemlett.2c00487
pmid: 37197452
|
| [25] |
MAO Z, MATSUDA Y, TAMURA R, et al. Chemical design with GPU-based Ising machines[J]. Digital Discovery, 2023, 2(4):1098-1103.
|
| [26] |
NOÉ F, OLSSON S, KÖHLER J, et al. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning[J]. Science, 2019, 365(6457):eaaw1147.
|
| [27] |
SAKAGUCHI H, OGATA K, ISOMURA T, et al. Boltzmann sampling by degenerate optical parametric oscillator network for structure-based virtual screening[J]. Entropy, 2016, 18(10):365.
|
| [28] |
XIA Q, FU Q, SHEN C, et al. Assessing small molecule conformational sampling methods in molecular docking[J]. Journal of Computational Chemistry, 2025, 46(1):e27516.
|
| [29] |
MATO K, MENGONI R, OTTAVIANI D, et al. Quantum molecular unfolding[J]. Quantum Science and Technology, 2022, 7(3):035020.
|
| [30] |
JUMPER J, EVANS R, PRITZELA, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583-589.
|
| [31] |
ABRAMSON J, ADLER J, DUNGER J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630(8016):493-500.
|
| [33] |
KRISHNA R, WANG J, AHERN W, et al. Generalized biomolecular modeling and design with RoseTTAFold all-atom[J]. Science, 2024, 384(6693):eadl2528.
|
| [34] |
GHAMARI D, COVINO R, FACCIOLI P. Sampling a rare protein transition using quantum annealing[J]. Journal of Chemical Theory and Computation, 2024, 20(8):3322-3334.
doi: 10.1021/acs.jctc.3c01174
pmid: 38587482
|