信息通信技术与政策

信息通信技术与政策

信息通信技术与政策 ›› 2023, Vol. 49 ›› Issue (6): 2-9.doi: 10.12267/j.issn.2096-5931.2023.06.001

专题:先进计算创新与应用 上一篇    下一篇

基于BERT的非招标采购实体关系抽取研究

Research on entity relationship extraction for non-bidding procurement based on BERT

张朝阳   

  1. 国家能源集团物资有限公司,北京 100055
  • 收稿日期:2023-05-11 出版日期:2023-06-25 发布日期:2023-06-27
  • 作者简介:
    张朝阳, 国家能源集团物资有限公司工程师,主要从事采购信息化、智能化等方面的研究工作。

ZHANG Zhaoyang   

  1. China Energy Materials Company Limited, Beijing 100055, China
  • Received:2023-05-11 Online:2023-06-25 Published:2023-06-27

摘要:

提出了一种基于BERT的实体长度感知的实体关系抽取模型IL-BERT,该模型在经过BERT方法提取的实体特征向量上引入实体长度信息,以增强实体特征的表示能力。分别在公共数据集和非招标采购领域数据集上进行试验,结果表明,提出模型的数值均优于基线模型。

关键词: BERT, 实体关系抽取, 实体长度感知, 非招标采购

Abstract:

This paper proposes an entity relationship extraction model IL-BERT which is based on BERT and can be aware of the entity length. This model introduces entity length information into the entity feature vectors extracted with the BERT method to enhance the representation ability of entity features. Experiments are conducted on both public and non-bidding procurement datasets, and the results show that the F1 values of the proposed model are better than those of the baseline model.

Key words: BERT, entity relationship extraction, entity length-aware model, non-bidding procurement

中图分类号: