| [1] |
凡一. 智慧电力推动绿色转型[J]. 中国电力企业管理, 2010(24):73.
|
| [2] |
梁川. 基于特征提取和随机森林的风机故障诊断[J]. 科学技术创新, 2020(26): 55-58.
|
| [3] |
阮爱国, 沈忠明, 刘发炳, 等. 一种单样本风电机组传动链故障诊断方法[J]. 机械传动, 2024, 48(8):161-168.
|
| [4] |
胡元坤, 郭盼盼. 一种风机齿轮箱故障智能诊断方法[J]. 中国新技术新产品, 2024(13): 62-64.
|
| [5] |
BILGILI A, ARDA T, KILIC B. Explainability in wind farm planning: a machine learning framework for automatic site selection of wind farms[J]. Energy Conversion and Management, 2024, 309:118441.
doi: 10.1016/j.enconman.2024.118441
URL
|
| [6] |
AGGARWAL S K, SAINI L M, SOOD V. Large wind farm layout optimization using nature inspired meta-heuristic algorithms[J]. IETE Journal of Research, 2023, 69(5):2683-2700.
doi: 10.1080/03772063.2021.1905082
URL
|
| [7] |
HAKLI H. The optimization of wind turbine placement using a binary artificial bee colony algorithm with multi-dimensional updates[J]. Electric Power Systems Research, 2023, 216: 109094.
doi: 10.1016/j.epsr.2022.109094
URL
|
| [8] |
董健. 风电机组关键部件故障预警与寿命评估方法及其应用研究[D]. 北京: 华北电力大学, 2021.
|
| [9] |
马明骏, 赵海心, 姜孝谟, 等. 基于LSTM-WPHM模型的风机轴承故障报警与寿命预测方法[J]. 风机技术, 2022(3): 63-71.
|
| [10] |
TENG W, ZHANG X L, LIU Y B, et al. Prognosis of the remaining useful life of bearings in a wind turbine gearbox[J]. Energies, 2017, 10(1): 32.
doi: 10.3390/en10010032
URL
|
| [11] |
DENG S, QIN X, HUANG S. A study on the effect of subsurface crack propagation on rolling contact fatigue in a bearing ring[J]. Journal of Mechanical Science and Technology, 2015, 29(3): 1029-1038.
doi: 10.1007/s12206-014-1114-2
URL
|
| [12] |
郑文杰, 谭慧娟, 赵瑞锋, 等. 基于ARIMA-LSTM-RBF组合模型的风机出力短期预测[J]. 电力科学与技术学报, 2024, 39(4): 153-159.
|
| [13] |
栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311.
|
| [14] |
张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42(10): 275-281.
|
| [15] |
李振涛, 王淑玲, 张国立. 利用遗传模拟退火算法优化神经网络结构[J]. 计算机工程与应用, 2007(36): 74-76,156.
|