| [1] |
阮应君, 侯泽群, 钱凡悦, 等. 基于深度强化学习的分布式能源系统运行优化[J]. 科学技术与工程, 2022, 22(17):7021-7030.
|
| [2] |
ZHOU Q, TANG P, LIU S, et al. Learning atoms for materials discovery[J]. Proceedings of the National Academy of Sciences, 2018, 115(28): E6411-E6417.
|
| [3] |
FUHR A S, SUMPTER B. Deep generative models for materials discovery and machine learning-accelerated innovation[J]. Frontiers in Materials, 2022, 9:865270.
|
| [4] |
ZHOU P, ZHOU Q, XIAO X, et al. Machine learning in solid-state hydrogen storage materials: challenges and perspectives[J]. Advanced Materials, 2025, 37(6):2413430.
|
| [5] |
MERCHANT A, BATZNER S, SCHOENHOLZ S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023,624: 80-85.
|
| [6] |
VERMA A, JOSHI K. MH-PCTpro: a machine learning model for rapid prediction of pressure-composition-temperature (PCT) isotherms[J]. iScience, 2025, 28(4):112251.
|
| [7] |
ZHOU P, XIAO X, ZHU X, et al. Machine learning enabled customization of performance-oriented hydrogen storage materials for fuel cell systems[J]. Energy Storage Materials, 2023, 63: 102964.
|
| [8] |
TAN Y, TAO X, OUYANG Y, et al. Stable and 7.7 wt% hydrogen storage capacity of Ti decorated Irida-Graphene from first-principles calculations[J]. International Journal of Hydrogen Energy, 2024, 50: 738-748.
|
| [9] |
LI C, YANG W, LIU H, et al. Picturing the gap between the performance and US-DOE’s hydrogen storage target: a data-driven model for MgH2 Dehydrogenation[J]. Angewandte Chemie International Edition, 2024, 63(28): e202320151.
|
| [10] |
SZYMANSKI N J, RENDY B, FEI Y, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990): 86-91.
|
| [11] |
CHEN B, ZHOU S, CHEN F. Modeling and control strategies for solid-state hydrogen storage system in fuel cell[J]. E3S Web Conferences, 2024, 546:03007.
|
| [12] |
姜智霖, 郝峰杰, 袁志昌, 等. 考虑SOC优化设定的电-氢混合储能系统的运行优化[J]. 电力系统保护与控制, 2024, 52(8): 65-76.
|