| [1] |
毛科. 数字化时代企业采购体系搭建及设计[J]. 能源, 2020(10):84-86.
|
| [2] |
郭莎莎. 国有企业非招标采购机制创新与合规运营实务解析[J]. 中国产经, 2025(14):122-124.
|
| [3] |
岳小川. 政府采购非招标采购方式程序解读(五)竞争性谈判和竞争性磋商采购方式的交易特点分析和应用比较[J]. 招标采购管理, 2015(5):58-61.
|
| [4] |
宋大鹏. 大型企业数字化采购平台开发实践[J]. 中国管理信息化, 2020, 23(21):49-53.
|
| [5] |
王晓洁. 非招标采购业务智能评审研究[J]. 中国信息化, 2022(11):83-84,91.
|
| [6] |
NGUYEN T T H, JATOWT A, COUSTATY M, et al. Survey of post-OCR processing approaches[J]. ACM Computing Surveys, 2021, 54(6):1-37.
|
| [7] |
MEMON J, SAMI M, KHAN R A, et al. Handwritten optical character recognition (OCR): a comprehensive systematic literature review (SLR)[J]. IEEE Access, 2020, 8:142642-142668.
|
| [8] |
GRAMA A Y, GUPTA A, KUMAR V. Isoefficiency: measuring the scalability of parallel algorithms and architectures[J]. IEEE Parallel & Distributed Technology: Systems & Applications, 2002, 1(3):12-21.
|
| [9] |
FAN H, FERIANC M, RODRIGUES M, et al. High-performance FPGA-based accelerator for bayesian neural networks[C]// 2021 58th ACM/IEEE Design Automation Conference (DAC). San Francisco: IEEE, 2021:1063-1068.
|
| [10] |
XU Y, LI M, CUI L, et al. LayoutLM: pre-training of text and layout for document image understanding[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020:1192-1200.
|
| [11] |
KIM G, HONG T, YIM M, et al. OCR-free document understanding transformer[C]// European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022, 13688:498-517.
|
| [12] |
BAI J, BAI S, YANG S, et al. Qwen-VL: a versatile vision-language model for understanding, localization, text reading, and beyond[J]. arXiv Preprint, arXiv:2308.12966, 2023.
|
| [13] |
GLM-V Team. GLM-4.5V and GLM-4.1V-thinking: towards versatile multimodal reasoning with scalable reinforcement learning[J]. arXiv Preprint, arXiv:2507.01006, 2025.
|
| [14] |
MOLINA A, TERRADES O R, LLADOS J. Fetch-A-Set: a large-scale OCR-free benchmark for historical document retrieval[C]// International Workshop on Document Analysis Systems. Cham: Springer Nature Switzerland, 2024:347-362.
|
| [15] |
LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. Advances in Neural Information Processing Systems, 2020, 33:9459-9474.
|
| [16] |
YANG A, LI A, YANG B, et al. Qwen3 technical report[R], 2025.
|
| [17] |
DeepSeek-AI, GUO D, YANG D, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[J]. arXiv Preprint, arXiv:2501.12948, 2025.
|
| [18] |
KIRK D. NVIDIA CUDA software and GPU parallel computing architecture[C]// Proceedings of the 6th International Symposium on Memory Management. New York: ACM, 2007, 7: 103-104.
|
| [19] |
MITTAL S, VETTER J S. A survey of CPU-GPU heterogeneous computing techniques[J]. ACM Computing Surveys (CSUR), 2015, 47(4): 1-35.
|
| [20] |
JIANG Y, ZHU Y, LAN C, et al. A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters[C]// 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). Berkeley: USENIX Association, 2020(26): 463-479.
|
| [21] |
KAMAHORI K, TANG T, GU Y, et al. Fiddler: CPU-GPU orchestration for fast inference of mixture-of-experts models[J]. arXiv Preprint, arXiv:2402.07033, 2024.
|
| [22] |
刘银娣. 同行评审的人工智能应用: 现状与挑战[J]. 出版科学, 2020, 28(5):68.
|
| [23] |
KHOKHAR A A, PRASANNA V K, SHAABAN M E, et al. Heterogeneous computing: challenges and opportunities[J]. Computer, 2002, 26(6):18-27.
|
| [24] |
CAO K, LIU Y, MENG G, et al. An overview on edge computing research[J]. IEEE Access, 2020, 8: 85714-85728.
|
| [25] |
周京艳, 黄裕荣, 刘如, 等. 智能集体评审的缘起和特征[J]. 中国科技期刊研究, 2018, 29(3):231.
doi: 10.11946/cjstp.201709180788
|