Information and Communications Technology and Policy ›› 2024, Vol. 50 ›› Issue (7): 59-68.doi: 10.12267/j.issn.2096-5931.2024.07.008
Previous Articles Next Articles
WENG Chenxun1, LI Mingyang1, YIN Hualei2, CHEN Zengbing1
Received:2024-06-22
Online:2024-07-25
Published:2024-07-30
Contact:
YIN Hualei
CLC Number:
WENG Chenxun, LI Mingyang, YIN Hualei, CHEN Zengbing. Quantum Byzantine agreement in blockchain: protocol, application and outlook[J]. Information and Communications Technology and Policy, 2024, 50(7): 59-68.
| 协议类型 | 检测量子拜 占庭共识协议 | 基于QDS的量子拜 占庭共识协议 |
|---|---|---|
| 安全性分析 | 未提供 | 提供 |
| 容错能力 | 仅限三方共识 | n≥2f+1, ∀f∈N+ |
| 消息类型 | 单比特 | 多比特 |
| 实验资源 | 多粒子纠缠态或 高维量子比特 | 弱相干态 |
| 是否需要 额外假设 | 是 | 否 |
| 协议类型 | 检测量子拜 占庭共识协议 | 基于QDS的量子拜 占庭共识协议 |
|---|---|---|
| 安全性分析 | 未提供 | 提供 |
| 容错能力 | 仅限三方共识 | n≥2f+1, ∀f∈N+ |
| 消息类型 | 单比特 | 多比特 |
| 实验资源 | 多粒子纠缠态或 高维量子比特 | 弱相干态 |
| 是否需要 额外假设 | 是 | 否 |
| [1] | LAMPORT L, SHOSTAK R, PEASE M. The Byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3): 382-401. |
| [2] | CASTRO M, LISKOV B. Practical Byzantine fault tolerance[C]// Proceedings of the Third Symposium on Operating Systems Design and Implementation. New Orleans: OsDI, 1999: 173-186. |
| [3] | CASTRO M, LISKOV B. Practical Byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002, 20(4): 398-461. |
| [4] | AUBLIN P-L, MOKHTAR S B, QUEMA V. RBFT: redundant Byzantine fault tolerance[C/OL]// 2013 IEEE 33rd International Conference on Distributed Computing Systems. Philadelphia, PA, USA: IEEE, 2013: 297-306[2024-06-03]. http://ieeexplore.ieee.org/document/6681599/. |
| [5] | MILLER A, XIA Y, CROMAN K, et al. The honey badger of BFT protocols[C/OL]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna Austria: ACM, 2016: 31-42[2024-06-03]. https://dl.acm.org/doi/10.1145/2976749.2978399. |
| [6] | YIN M, MALKHI D, REITER M K, et al. HotStuff: BFT consensus with linearity and responsiveness[C/OL]// Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. Toronto ON Canada: ACM, 2019: 347-356[2024-06-03]. https://dl.acm.org/doi/10.1145/3293611.3331591. |
| [7] | GUO B, LU Z, TANG Q, et al. Dumbo: faster asynchronous BFT protocols[C/OL]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Virtual Event USA: ACM, 2020: 803-818[2024-06-03]. https://dl.acm.org/doi/10.1145/3372297.3417262. |
| [8] | LU Y, LU Z, TANG Q, et al. Dumbo-MVBA: optimal multi-valued validated asynchronous Byzantine agreement, revisited[C/OL]// Proceedings of the 39th Symposium on Principles of Distributed Computing. Virtual Event Italy: ACM, 2020: 129-138[2024-06-03]. https://dl.acm.org/doi/10.1145/3382734.3405707. |
| [9] | PEASE M, SHOSTAK R, LAMPORT L. Reaching agreement in the presence of faults[J]. Journal of the ACM, 1980, 27(2): 228-234. |
| [10] | FISCHER M J, LYNCH N A, MERRITT M. Easy impossibility proofs for distributed consensus problems[J]. Distributed Computing, 1986, 1(1): 26-39. |
| [11] | KIKTENKO E O, POZHAR N O, ANUFRIEV M N, et al. Quantum-secured blockchain[J]. Quantum Science and Technology, 2018, 3(3): 035004. |
| [12] | SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C/OL]// Proceedings 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA: IEEE Computer Society Press, 1994: 124-134[2024-06-03]. http://ieeexplore.ieee.org/document/365700/. |
| [13] | SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509. |
| [14] |
O’BRIEN J L. Optical quantum computing[J]. Science, 2007, 318(5856): 1567-1570.
pmid: 18063781 |
| [15] | FEDOROV A K, KIKTENKO E O, LVOVSKY A I. Quantum computers put blockchain security at risk[J]. Nature, 2018, 563(7732): 465-467. |
| [16] | ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510. |
| [17] | FITZI M, GISIN N, MAURER U. Quantum solution to the Byzantine agreement problem[J]. Physical Review Letters, 2001, 87(21): 217901. |
| [18] | GAERTNER S, BOURENNANE M, KURTSIEFER C, et al. Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection[J]. Physical Review Letters, 2008, 100(7): 070504. |
| [19] | NEIGOVZEN R, RODÓ C, ADESSO G, et al. Multipartite continuous-variable solution for the Byzantine agreement problem[J]. Physical Review A, 2008, 77(6): 062307. |
| [20] | RAHAMAN R, WIEŚNIAK M, ŻUKOWSKI M, Quantum Byzantine agreement via hardy correlations and entanglement swapping[J]. Physical Review A, 2015, 92(4): 042302. |
| [21] | TAVAKOLI A, CABELLO A, ŻUKOWSKI M, et al. Quantum clock synchronization with a single qudit[J]. Scientific Reports, 2015, 5(1): 7982. |
| [22] | SMANIA M, ELHASSAN A M, TAVAKOLI A, et al. Experimental quantum multiparty communication protocols[J]. Npj Quantum Information, 2016, 2(1): 16010. |
| [23] | SUN X, KULICKI P, SOPEK M. Multi-party quantum Byzantine agreement without entanglement: 10[J]. Entropy, 2020, 22(10): 1152. |
| [24] | BEN-OR M, HASSIDIM A. Fast quantum Byzantine agreement[C/OL]// Proceedings of the Thirty-seventh annual ACM symposium on Theory of Computing. Baltimore MD USA: ACM, 2005: 481-485[2024-06-03]. https://dl.acm.org/doi/10.1145/1060590.1060662. |
| [25] | GOTTESMAN D, CHUANG I. Quantum digital signatures[J]. arXiv Preprint, arXiv: quant-ph/0105032, 2001. |
| [26] | CLARKE P J, COLLINS R J, DUNJKO V, et al. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light[J]. Nature Communications, 2012, 3(1): 1174. |
| [27] | DUNJKO V, WALLDEN P, ANDERSSON E. Quantum digital signatures without quantum memory[J]. Physical Review Letters, 2014, 112(4): 040502. |
| [28] | COLLINS R J, DONALDSON R J, DUNJKO V, et al. Realization of quantum digital signatures without the requirement of quantum memory[J]. Physical Review Letters, 2014, 113(4): 040502. |
| [29] | CROAL C, PEUNTINGER C, HEIM B. Free-space quantum signatures using heterodyne measurements[J]. Physical Review Letters, 2016, 117(10): 100503. |
| [30] | YIN H L, FU Y, CHEN Z B. Practical quantum digital signature[J]. Physical Review A, 2016, 93(3): 032316. |
| [31] | AMIRI R, WALLDEN P, KENT A, et al. Secure quantum signatures using insecure quantum channels[J]. Physical Review A, 2016, 93(3): 032325. |
| [32] | AN X B, ZHANG H, ZHANG C M, et al. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system[J]. Optics Letters, 2019, 44(1): 139-142. |
| [33] | T HORNTON M, SCOTT H, CROAL C, et al. Continuous-variable quantum digital signatures over insecure channels[J]. Physical Review A, 2019, 99(3): 032341. |
| [34] | RICHTER S, THORNTON M, KHAN I, et al. Agile and versatile quantum communication: signatures and secrets[J]. Physical Review X, 2021, 11(1): 011038. |
| [35] | ZHAO W, SHI R, SHI J, et al. Multibit quantum digital signature with continuous variables using basis encoding over insecure channels[J]. Physical Review A, 2021, 103(1): 012410. |
| [36] | PUTHOOR I V, AMIRI R, WALLDEN P, et al. Measurement-device-independent quantum digital signatures[J]. Physical Review A, 2016, 94(2): 022328. |
| [37] | YIN H L, FU Y, LIU H, et al. Experimental quantum digital signature over 102 km[J]. Physical Review A, 2017, 95(3): 032334. |
| [38] | ROBERTS G L, LUCAMARINI M, YUAN Z L, et al. Experimental measurement-device-independent quantum digital signatures[J]. Nature Communications, 2017, 8(1): 1098. |
| [39] | ZHANG C H, ZHOU X, ZHANG C M, et al. Twin-field quantum digital signatures[J]. Optics Letters, 2021, 46(15): 3757-3760. |
| [40] | LU Y S, CAO X Y, WENG C X, et al. Efficient quantum digital signatures without symmetrization step[J]. Optics Express, 2021, 29(7): 10162-10171. |
| [41] | WENG C X, LU Y S, GAO R Q, et al. Secure and practical multiparty quantum digital signatures[J]. Optics Express, 2021, 29(17): 27661-27673. |
| [42] | YIN H L, FU Y, LI C L, et al. Experimental quantum secure network with digital signatures and encryption[J]. National Science Review, 2023, 10(4): nwac228. |
| [43] | LI B H, XIE Y M, CAO X Y, et al. One-time universal hashing quantum digital signatures without perfect keys[J]. Physical Review Applied, 2023, 20(4): 044011. |
| [44] | WENG C X, GAO R Q, BAO Y, et al. Beating the fault-tolerance bound and security loopholes for Byzantine agreement with a quantum solution[J]. Research, 2023, 6: 0272. |
| [45] | YIN H L, LIU P, DAI W W, et al. Experimental composable security decoy-state quantum key distribution using time-phase encoding[J]. Optics Express, 2020, 28(20): 29479-29485. |
| [46] | WALLDEN P, DUNJKO V, KENT A, et al. Quantum digital signatures with quantum-key-distribution components[J]. Physical Review A, 2015, 91(4): 042304. |
| [47] | ZHOU Q, HUANG H, ZHENG Z, et al. Solutions to scalability of blockchain: a survey[J]. IEEE Access, 2020, 8: 16440-16455. |
| [48] | JING X, QIAN C, WENG C X, et al. Experimental quantum Byzantine agreement on a three-user quantum network with integrated photonics[J]. arXiv Preprint, arXiv: 2403.11441, 2024. |
| [49] | PAING S N, SETIAWAN J W, ULLAH M A, et al. Counterfactual quantum Byzantine consensus for human-centric metaverse[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(4): 905-918. |
| [1] | LYU Pin, YUAN Tao. Application ecosystem construction and development suggestions for quantum computing cloud platforms [J]. Information and Communications Technology and Policy, 2024, 50(7): 18-23. |
| [2] | WANG Jing, ZHANG Meng, LI Fang. Analysis of quantum computing technology and industrial development trends [J]. Information and Communications Technology and Policy, 2024, 50(7): 39-47. |
| [3] | JIA Yu, ZHANG Bowen. Research on quantum computing technology development and innovation [J]. Information and Communications Technology and Policy, 2024, 50(7): 69-75. |
| [4] | JIA Chunyang, CHEN Xuehua, CONG Nan, LUO Wenhao, ZHANG Xiaonan, YANG Renfu. Rydberg atomic electromagnetic detection technology and application [J]. Information and Communications Technology and Policy, 2024, 50(7): 85-96. |
| [5] | ZHANG Meng, WANG Jing, HUANG Zhiguo, QIAN Ling. Research on current situation and trend of quantum-classical fused computing development [J]. Information and Communications Technology and Policy, 2024, 50(7): 9-17. |
| [6] | LI Zhuoying, DENG Ziyi, ZHOU Zhuojun, QIU Daowen, ZHU Feng, LUO Le. Development and application of distributed quantum computing with trapped ions [J]. Information and Communications Technology and Policy, 2023, 49(7): 2-8. |
| [7] | ZHANG Meng, WANG Jing, ZHAO Wenyu, ZHANG Haiyi. Architecture and development of quantum computing cloud platform [J]. Information and Communications Technology and Policy, 2023, 49(7): 27-35. |
| [8] | WEI Shihai, ZHANG Xueying, LIAO Jinyu, FAN Boyu, FAN Yunru, ZHOU Qiang. Progress of integrated solid-state photonic quantum memory [J]. Information and Communications Technology and Policy, 2023, 49(7): 44-52. |
| [9] | YAO Fei, LAI Junsen, LI Fang, ZHAO Wenyu. Enabling technologies and building blocks of quantum information network [J]. Information and Communications Technology and Policy, 2023, 49(7): 60-67. |
| [10] | WANG Jing, ZHANG Meng, LI Fang, ZHANG Haiyi. Analysis of technology and application development of quantum computing [J]. Information and Communications Technology and Policy, 2023, 49(7): 9-16. |
| [11] | XIAO Qin, CHENG Guangming. Analysis on patent layout and development trend of quantum communication in China [J]. Information and Communications Technology and Policy, 2022, 48(12): 88-96. |
| [12] | CHENG Ming, ZHANG Chengliang, TANG Jianjun. Discussion on quantum secure communication application and technology [J]. Information and Communications Technology and Policy, 2022, 48(7): 14-19. |
| [13] | WANG Jing, LI Hongyang, ZHAO Wenyu. Analysis of the technology research and application exploration of quantum computing [J]. Information and Communications Technology and Policy, 2022, 48(7): 20-27. |
| [14] | LI Meng, SUN Xiaoming. Research progress on quantum walk related algorithms [J]. Information and Communications Technology and Policy, 2022, 48(7): 28-36. |
| [15] | ZHANG Meng, LAI Junsen, ZHANG Haiyi, ZHAO Xin. Research and development trend of quantum computing benchmarking [J]. Information and Communications Technology and Policy, 2022, 48(7): 44-51. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn
