Information and Communications Technology and Policy ›› 2023, Vol. 49 ›› Issue (7): 44-52.doi: 10.12267/j.issn.2096-5931.2023.07.006
Previous Articles Next Articles
WEI Shihai, ZHANG Xueying, LIAO Jinyu, FAN Boyu, FAN Yunru, ZHOU Qiang
Received:
2023-06-12
Online:
2023-07-25
Published:
2023-08-03
CLC Number:
WEI Shihai, ZHANG Xueying, LIAO Jinyu, FAN Boyu, FAN Yunru, ZHOU Qiang. Progress of integrated solid-state photonic quantum memory[J]. Information and Communications Technology and Policy, 2023, 49(7): 44-52.
工艺方案 | 存储材料 | 存储波长/nm | 存储时间/ns | 存储效率/% | 存储带宽/MHz | 存储模式/个 |
---|---|---|---|---|---|---|
掺铒石英光纤 | Er3+:SiO2[ | 1 532 | 230 | 2.0 | 50 000 | 1 650 |
钛扩散掺杂铌酸锂波导 | Tm3+:LiNbO3[ | 795 | 60 | 0.2 | 5 000 | 26 |
Er3+:LiNbO3[ | 1 532 | 48 | 0.1 | 6 000 | 1 | |
激光直写I型掺杂波导 | Pr3+:Y2SiO5[ | 606 | 5 500 | 7.0 | 60 | 130 |
激光直写II型掺杂波导 | Pr3+:Y2SiO5[ | 606 | 13 000 | 2.7 | 4 | 1 |
Eu3+:Y2SiO5[ | 580 | 9 880 | 34.4 | 11 | 1 | |
激光直写III型掺杂波导 | Eu3+:Y2SiO5[ | 580 | 2 500 | 26.8 | 10 | 1 |
Er3+:Y2SiO5[ | 1 538 | 325 | 10.9 | 100 | 1 | |
Er3+:LiNbO3[ | 1 532 | 260 | 1.0 | 4 000 | 330 | |
激光直写IV型掺杂波导 | Eu3+:Y2SiO5[ | 580 | 10 500 | 2.4 | 2 | 1 |
聚焦离子束刻蚀掺杂器件 | Nd3+:YVO4[ | 880 | 75 | 2.5 | 80 | 1 |
Er3+:Y2SiO5[ | 1 539 | 165 | 0.2 | 90 | 10 |
工艺方案 | 存储材料 | 存储波长/nm | 存储时间/ns | 存储效率/% | 存储带宽/MHz | 存储模式/个 |
---|---|---|---|---|---|---|
掺铒石英光纤 | Er3+:SiO2[ | 1 532 | 230 | 2.0 | 50 000 | 1 650 |
钛扩散掺杂铌酸锂波导 | Tm3+:LiNbO3[ | 795 | 60 | 0.2 | 5 000 | 26 |
Er3+:LiNbO3[ | 1 532 | 48 | 0.1 | 6 000 | 1 | |
激光直写I型掺杂波导 | Pr3+:Y2SiO5[ | 606 | 5 500 | 7.0 | 60 | 130 |
激光直写II型掺杂波导 | Pr3+:Y2SiO5[ | 606 | 13 000 | 2.7 | 4 | 1 |
Eu3+:Y2SiO5[ | 580 | 9 880 | 34.4 | 11 | 1 | |
激光直写III型掺杂波导 | Eu3+:Y2SiO5[ | 580 | 2 500 | 26.8 | 10 | 1 |
Er3+:Y2SiO5[ | 1 538 | 325 | 10.9 | 100 | 1 | |
Er3+:LiNbO3[ | 1 532 | 260 | 1.0 | 4 000 | 330 | |
激光直写IV型掺杂波导 | Eu3+:Y2SiO5[ | 580 | 10 500 | 2.4 | 2 | 1 |
聚焦离子束刻蚀掺杂器件 | Nd3+:YVO4[ | 880 | 75 | 2.5 | 80 | 1 |
Er3+:Y2SiO5[ | 1 539 | 165 | 0.2 | 90 | 10 |
[1] |
KIMBLE H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.
doi: 10.1038/nature07127 |
[2] |
WEHNER S, ELKOUSS D, HANSON R. Quantum internet: a vision for the road ahead[J]. Science, 2018, 362(6412): eaam9288.
doi: 10.1126/science.aam9288 URL |
[3] | WEI S H, JING B, ZHANG X Y, et al. Towards real-world quantum networks: a review[J]. Laser & Photonics Reviews, 2022, 16(3): 2100219. |
[4] |
GISIN N, THEW R. Quantum communication[J]. Nature Photonics, 2007, 1(3): 165-171.
doi: 10.1038/nphoton.2007.22 |
[5] | HU X M, GUO Y, LIU B H, et al. Progress in quantum teleportation[J]. Nature Reviews Physics, 2023: 1-15. |
[6] | 周强, 韦晨, 汪相如, 等. 光通信波段多频道量子通道的实验研究[J]. 中国基础科学, 2019, 21(1): 7-11. |
[7] | KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1). |
[8] |
GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4): 222-229.
doi: 10.1038/nphoton.2011.35 |
[9] |
LIU Y, ZHANG W J, JIANG C, et al. Experimental twin-field quantum key distribution over 1 000 km fiber distance[J]. Physical Review Letters, 2023, 130(21): 210801.
doi: 10.1103/PhysRevLett.130.210801 URL |
[10] |
SIMON C, DE RIEDMATTEN H, AFZELIUS M, et al. Quantum repeaters with photon pair sources and multimode memories[J]. Physical Review Letters, 2007, 98(19): 190503.
doi: 10.1103/PhysRevLett.98.190503 URL |
[11] |
BENNETT C H, BRASSARD G, POPESCU S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Physical Review Letters, 1996, 76(5): 722.
pmid: 10061534 |
[12] |
DUR W, BRIEGEL H J, CIRAC J I, et al. Quantum repeaters based on entanglement purification[J]. Physical Review A, 1999, 59(1): 169.
doi: 10.1103/PhysRevA.59.169 URL |
[13] |
LVOVSKY A I, SANDERS B C, TITTEL W. Optical quantum memory[J]. Nature Photonics, 2009, 3(12): 706-714.
doi: 10.1038/nphoton.2009.231 |
[14] |
WILK T, WEBSTER S C, KUHN A, et al. Single-atom single-photon quantum interface[J]. Science, 2007, 317(5837): 488-490.
pmid: 17588899 |
[15] |
KUZMICH A, BOWEN W, BOOZER A, et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles[J]. Nature, 2003, 423(6941): 731-734.
doi: 10.1038/nature01714 |
[16] | 张雪莹, 袁晨智, 魏世海, 等. 稀土掺杂固态量子存储研究进展[J]. 低温物理学报, 2019, 41(5): 315-334. |
[17] | 李城, 敬波, 廖金宇, 等. 通信波段稀土离子掺杂固态量子存储进展[J]. 激光技术, 2022, 46(1): 45-57. |
[18] | JIANG M H, XUE W, HE Q, et al. Quantum storage of entangled photons at telecom wavelengths in a crystal[J]. ArXiv Preprint ArXiv:2212.12898, 2022. |
[19] | BOLLAR K J, IMAMOGLU A, HARRI S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991(66): 2593-2596. |
[20] |
HEINZE G, HUBRICH C, HALFMANN T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.
doi: 10.1103/PhysRevLett.111.033601 URL |
[21] |
AFZELIUS M, SIMON C, DE RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review A, 2009, 79(5): 052329.
doi: 10.1103/PhysRevA.79.052329 URL |
[22] |
LIU D C, LI P Y, ZHU T X, et al. On-demand storage of photonic qubits at telecom wavelengths[J]. Physical Review Letters, 2022, 129(21): 210501.
doi: 10.1103/PhysRevLett.129.210501 URL |
[23] |
DAMON V, BONAROTA M, LOUCHET-CHAUVET A, et al. Revival of silenced echo and quantum memory for light[J]. New Journal of Physics, 2011, 13(9): 093031.
doi: 10.1088/1367-2630/13/9/093031 URL |
[24] |
LIU C, ZHOU Z Q, ZHU T X, et al. Reliable coherent optical memory based on a laser-written waveguide[J]. Optica, 2020, 7(2): 192-197.
doi: 10.1364/OPTICA.379166 URL |
[25] |
MA Y Z, JIN M, CHEN D L, et al. Elimination of noise in optically rephased photon echoes[J]. Nature Communications, 2021, 12(1): 4378.
doi: 10.1038/s41467-021-24679-4 |
[26] | 周宗权. 量子存储式量子计算机与无噪声光子回波[J]. 物理学报, 2022, 71(7): 60-63. |
[27] |
SAGLAMYUREK E, JIN J, VERMA V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre[J]. Nature Photonics, 2015, 9(2): 83-87.
doi: 10.1038/nphoton.2014.311 |
[28] |
JIN J, SAGLAMYUREK E, VERMA V, et al. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits[J]. Physical Review Letters, 2015, 115(14): 140501.
doi: 10.1103/PhysRevLett.115.140501 URL |
[29] |
SAGLAMYUREK E, GRIMAU PUIGIBERT M, ZHOU Q, et al. A multiplexed light-matter interface for fibre-based quantum networks[J]. Nature Communications, 2016, 7(1): 11202.
doi: 10.1038/ncomms11202 |
[30] | WEI S H, JING B, ZHANG X Y, et al. Storage of 1 650 modes of single photons at telecom wavelength[J]. ArXiv Preprint ArXiv:2209.00802, 2022. |
[31] |
SAGLAMYUREK E, SINCLAIR N, JIN J, et al. Broadband waveguide quantum memory for entangled photons[J]. Nature, 2011, 469(7331): 512-515.
doi: 10.1038/nature09719 |
[32] |
SINCLAIR N, SAGLAMYUREK E, MALLAHZADEH H, et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control[J]. Physical Review Letters, 2014, 113(5): 053603.
doi: 10.1103/PhysRevLett.113.053603 URL |
[33] |
ASKARANI M F, LUTZ T, VERMA V B, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056.
doi: 10.1103/PhysRevApplied.11.054056 URL |
[34] |
SERI A, LAGO-RIVERA D, LENHARD A, et al. Quantum storage of frequency-multiplexed heralded single photons[J]. Physical Review Letters, 2019, 123(8): 080502.
doi: 10.1103/PhysRevLett.123.080502 URL |
[35] |
CORRIELLI G, SERI A, MAZZERA M, et al. Integrated optical memory based on laser-written waveguides[J]. Physical Review Applied, 2016, 5(5): 054013.
doi: 10.1103/PhysRevApplied.5.054013 URL |
[36] |
SERI A, CORRIELLI G, LAGO-RIVERA D, et al. Laser-written integrated platform for quantum storage of heralded single photons[J]. Optica, 2018, 5(8): 934-941.
doi: 10.1364/OPTICA.5.000934 URL |
[37] |
ZHU T X, LIU C, ZHENG L, et al. Coherent optical memory based on a laser-written on-chip waveguide[J]. Physical Review Applied, 2020, 14(5): 054071.
doi: 10.1103/PhysRevApplied.14.054071 URL |
[38] |
LIU C, ZHU T X, SU M X, et al. On-demand quantum storage of photonic qubits in an on-chip waveguide[J]. Physical Review Letters, 2020, 125(26): 260504.
doi: 10.1103/PhysRevLett.125.260504 URL |
[39] |
ZHU T X, LIU C, JIN M, et al. On-demand integrated quantum memory for polarization qubits[J]. Physical Review Letters, 2022, 128(18): 180501.
doi: 10.1103/PhysRevLett.128.180501 URL |
[40] | ZHANG X Y, ZHANG B, WEI S H, et al. Telecom-band integrated multimode photonic quantum memory[J]. Science Advances, in press, 2023. |
[41] |
ZHONG T, KINDEM J M, MIYAZONO E, et al. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals[J]. Nature Communications, 2015, 6(1): 8206.
doi: 10.1038/ncomms9206 |
[42] | ZHONG T, KINDEM J M, ROCHMAN J, et al. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles[J]. Nature Communic-ations, 2017, 8(1): 14107. |
[43] |
ZHONG T, KINDEM J M, BARTHOLOMEW J G, et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval[J]. Science, 2017, 357(6358): 1392-1395.
doi: 10.1126/science.aan5959 pmid: 28860208 |
[44] |
CRAICIU I, LEI M, ROCHMAN J, et al. Nanophotonic quantum storage at telecommunication wavelength[J]. Physical Review Applied, 2019, 12(2): 024062.
doi: 10.1103/PhysRevApplied.12.024062 URL |
[45] |
CRAICIU I, LEI M, ROCHMAN J, et al. Multifunctional on-chip storage at telecommunication wavelength for quantum networks[J]. Optica, 2021, 8(1): 114-121.
doi: 10.1364/OPTICA.412211 URL |
[1] | ZHANG Dong, SU Yonglei, HAN Dong. Research on digital transformation of SMEs based on industrial PON [J]. Information and Communications Technology and Policy, 2023, 49(4): 86-90. |
[2] | XU Xiaoyan, HAN Kaifeng, DU Ying, LIU Hui, ZHAO Yan. 6G vision and potential key technology analysis [J]. Information and Communications Technology and Policy, 2022, 48(9): 2-8. |
[3] | ZHANG Xuebei, WANG Liwen, YANG Wencong, ZHANG Shuai. Research and trend analysis of user plane evolution for 5G-A and 6G [J]. Information and Communications Technology and Policy, 2022, 48(9): 64-70. |
[4] | LONG Guilu, PAN Dong. Recent advances in quantum secure direct communication and its perspectives of application [J]. Information and Communications Technology and Policy, 2022, 48(7): 9-13. |
[5] | WANG Xue, LI Wulu, LI Yuan, HE Linfang, LIU Chunwei, LI Sisi. Analysis of privacy preserving computing in inclusive finance [J]. Information and Communications Technology and Policy, 2022, 48(5): 53-59. |
[6] | ZHANG Yuming, ZHANG Qiwei. Research on data integration of large group enterprises [J]. Information and Communications Technology and Policy, 2022, 48(2): 61-66. |
[7] | LI Zhenwen, LI Fang. Thinking on application and evolutionof service-aware technology in 5G bearer network [J]. Information and Communications Technology and Policy, 2022, 48(12): 82-87. |
[8] | WANG Linkun, LIU Dan, GONG Yanjie. Analysis and solution of interconnection problems of industrial field equipment [J]. Information and Communications Technology and Policy, 2022, 48(10): 37-42. |
[9] | HOU Liming, HAN Bo, MIAO Deshan, KANG Shaoli, SUN Shaohui, . Research of air-interface technologies for 5G based integrated satellite-terrestrial communication [J]. Information and Communications Technology and Policy, 2021, 47(9): 21-29. |
[10] | CHENG Xinzhou, JIA Yuwei, CHENG Chen. Data driven network intelligent operation architecture [J]. Information and Communications Technology and Policy, 2021, 47(6): 68-73. |
[11] | CAO Chang, TANG Xiongyan. Analysis of key technologies and development challenges of computing power network [J]. Information and Communications Technology and Policy, 2021, 47(3): 6-11. |
[12] | WANG Yu, CUI Xiao. Research progress of optical transport network management and control integration and thoughts on the evolution of intelligence [J]. Information and Communications Technology and Policy, 2021, 47(12): 81-. |
[13] | LIN Deping, PENG Tao, LIU Chunping. Prospect of 6G vision requirements, network architecture and key technology [J]. Information and Communications Technology and Policy, 2021, 47(1): 82-89. |
[14] | WU Wenhao. Industrial Internet promotes integration of production and financing for SMEs [J]. Information and Communications Technology and Policy, 2020, 46(6): 47-50. |
[15] | JIANG Yue. Research on the motivation of leading enterprises incubating small and medium-sized enterprises [J]. Information and Communications Technology and Policy, 2020, 46(3): 64-65. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 315
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn