[1] |
N. McKeown, T. Anderson, H. Balakrishnan, et al.OpenFlow: enabling innovation in campus networks[J].Acm Sigcomm Computer Communication, 2008,38(2):69-74.
|
[2] |
T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al.Continuous control with deep reinforcement learning[R].The 4th International Conference on Learning Representations, 2016
|
[3] |
G. Stampa, M. Arias, D. Sanchez-Charles, et al. A deep-reinforcement learning approach for software-defined networking routing optimization [ J ]. arXiv: 1709.07080, 2017.
|
[4] |
C. Yu, J. Lan, Z. Guo, et al. DROM: optimizing the routing in software-defined networks with deep reinforcement learning [ J ]. IEEE Access, 2018, 6:64533-64539.
|
[5] |
X. Huang, T. Yuan, G. Qiao, et al. Deep reinforcement learning for multimedia traffic control in software defined
|
|
networking[J]. IEEE Network, 2018,32(6):35-41.
|
[6] |
T. A. Q. Pham, Y. Hadjadj-Aoul, A. Outtagarts. Deep reinforcement learning based QoS-aware routing in
|
|
knowledge-defined networking [ J ] Lect. Notes Inst.Comput. Sci. Soc. Telecommun. Eng. LNICST, 2019,272:14-26.
|
[7] |
P. Sun, J. Li, J. Lan, et al. RNN deep reinforcement learning for routing optimization[R]. 2018 IEEE 4th Int.Conf,2018.
|
[8] |
D. Silver, G. Lever, N. Heess, et al. Deterministic policy gradient algorithms [ R]. The 31st International Conference on Machine Learning, 2014.
|
[9] |
Klaus Wehrle, Mesut Gnes, James Gross. Modeling and tools for network simulation [M]. Springer Publishing Company, Incorporated, 2010.
|
[10] |
GitHub. RL4Net. [2020-08-05]. https://github.com/bupt-ipcr/RL4Net.
|