[1] |
张萌. 多方携手,共促我国量子测量技术发展[N]. 人民邮电, 2018-12-21(008).
|
[2] |
张淋, 高伟, 李倩. 冷原子干涉陀螺仪实现及其性能分析[J]. 仪器仪表学报, 2018,39(7):11-18.
|
[3] |
李嘉华, 姜伯楠. 原子干涉重力测量技术研究进展及发展趋势[J]. 导航与控制, 2019,18(3):1-6+81
|
[4] |
孙悦, 马菁汀, 刘尊龙, 等. 量子雷达研究新进展[J].战术导弹技术, 2018, 191(5):12-18.
|
[5] |
Kim D, Ibrahim M I, Foy C, et al. A CMOS-integrated quantum sensor based on nitrogen – vacancy centres[J]. Nature Electronics, 2019, 2(7): 284-289.
|
[6] |
Chen X D, Zheng Y, Du B, et al. High-Contrast quantum imaging with Time-Gated fluorescence detection[J]. Physical Review Applied, 2019, 11(6): 064024.
|
[7] |
Newman Z L, Maurice V, Drake T, et al. Architecturefor the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5): 680-685.
|
[8] |
Wu X, Pagel Z, Malek B S, et al. Gravity surveys using a mobile atom interferometer [J]. arXiv preprintarXiv:1904. 09084, 2019.
|
[9] |
Fu Z, Wu B, Cheng B, et al. A new type of compact gravimeter for long-term absolute gravity monitoring[J]. Metrologia, 2019.
|
[10] |
Noor R M, Kulachenkov N, Asadian M H, et al. Study on Mems Glassblown Cells for NMR Sensors[C] / / 2019
|
|
IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). IEEE, 2019: 1-4.
|
[11] |
万双爱, 孙晓光, 郑辛, 等. 核磁共振陀螺技术发展展望[J]. 导航定位与授时, 2017,4(1):7-13.
|
[12] |
Sin ha G. Gaurav. Quantum Sensors: Quantum entanglement for communications and beyond [ R ].USA: BCC Publishing, 2019.
|
[13] |
IMT-2020(5G)推进组. 5G 同步组网架构及关键技术白皮书[R]. 北京:IMT-2020(5G)推进组, 2019
|
[14] |
张萌. 基于BP 神经网络的高精度本地多基准时钟合成算法研究[J]. 电子学报, 2019,47(8):1618-1625.
|
[15] |
房芳, 张爱敏, 李天初. 时间:从天文时到原子秒[J].计量技术, 2019(5):7-10.
|
[16] |
McGrew W F, Zhang X, Fasano R J, et al. Atomic clock performance enabling geodesy below the centimetre
|
|
level[J]. Nature, 2018, 564(7734): 87.
|
[17] |
Huang Y, Guan H, Bian W, et al. A comparison of two 40 Ca+ single-ion optical frequency standards at the 5×
|
10 |
-17 level and an evaluation of systematic shifts [J].Applied Physics B, 2017, 123(5): 166.
|
[18] |
侯飞雁, 权润爱, 邰朝阳, 等. 量子时间同步协议研究进展回顾[J]. 时间频率学报, 2014,37(2):65-73.
|