[1] |
徐婧, 唐川, 杨况骏瑜. 量子传感与测量领域国际发展态势分析[J]. 世界科技研究与发展, 2022, 44(1): 46-58.
|
[2] |
ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.
doi: 10.1103/PhysRevLett.89.130801
URL
|
[3] |
DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.
doi: 10.1063/1.3491215
URL
|
[4] |
CHAIKOVSKY L, KOHLER J, HEEKER T, et al. Detection of coronary artery disease in patients with normal or unspecifically changed ECG on the basis of Magnetocardiography[C]// In Biomag 2000 Proceedings of the 12th International Conference on Biomaglletism. Helsinki: University of Technology,Espoo, 2001:565-568.
|
[5] |
LI Y, CHE Z, QUAN W, et al. Diagnostic outcomes of magnetocardiography in patients with coronary artery disease[J]. International Journal of Clinical And Experimental Medicine, 2015, 8(2): 2441-2446.
pmid: 25932186
|
[6] |
ITO, YOKO, SHIGA, et al. Development of a magnetocardiography-based algorithm for discrimination between ventricular arrhyth-mias originating from the right ventricular outflow tract and those originating from the aortic sinus cusp: a pilot study[J]. Heart Rhythm, 2014, 11(9): 1605-1612.
doi: 10.1016/j.hrthm.2014.05.032
URL
|
[7] |
KORHONEN P, MONTONEN J, ENDT P, et al. Magnetocardiographic intra- QRS fragmentation analysis in the identification of patients with sustained ventricular tachycardia after myocardial infarction[J]. Pacing Clin Electrophysiol, 2001, 24(8-1): 1179-1186.
doi: 10.1046/j.1460-9592.2001.01179.x
URL
|
[8] |
KAWAKAMI S, TAKAKI H, HASHIMOTO S, et al. Magnetocardiography can disclose delayed left ventricular conduction and predict cardiac events in non-ischemic dilated cardio-myopathy patients with narrow QRS[J]. Invasive Diagnostics, 2019: 774.
|
[9] |
华宁, 唐发宽, 布伦, 等. 心磁图对左心室肥厚诊断价值的初步探讨[J]. 中国医疗设备, 2009, 24(4): 9-10.
|
[10] |
WAKAI R T, STRASBURGER J F, LI Z, et al. Magnetocardiographic rhythm patterns at initiation and termination of fetal supraventricular tachycardia[J]. Circulation Journal, 2003(107): 307-312.
|
[11] |
CAMPBELL JQ, BEST TH, ESWARAN H, et al. Fetal and maternal magnetocardiography during flecainide therapy for supraventricular tachycardia[J]. Obstet Gynecol, 2006, 108(3-2): 767-771.
doi: 10.1097/01.AOG.0000197063.25177.69
URL
|
[12] |
KNOWLTON RC, ELGAVISH R, HOWELL J, et al. Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study[J]. Ann Neurol, 2006, 59(5): 835-842
pmid: 16634031
|
[13] |
OKA A, KUBOTA M, SAKAKIHARA Y, et al. A case of parietal lobe epilepsy with distinctive clinical and neuroradiological features[J]. Brain & Devolopment, 1998, 20(3): 179-182.
|
[14] |
LOPEZ ME, TURRERO A, CUESTA P, et al. Searching for primary predictors of conversion from mild cognitive impairment to alzheimer’s disease: a multivariate follow-up study[J]. Journal of Alzheimer’s Disease, 2016, 52 (1): 133-143.
|
[15] |
MAESTU F, PEÑA JM, GARCES P, et al. A multicenter study of the early detection of synaptic dysfunction in mild cognitive impairment using magnetoencephalography-derived functional connectivity[J]. Neuroimage: Clinical, 2015(9): 103-109.
|
[16] |
HAN Y L, DAI Z P, RIDWAN M C, et al. Connectivity of the frontal cortical oscillatory dynamics underlying inhibitory control during a go/no-go task as a predictive biomarker in major depression[J]. Frontiers in Psychiatry, 2020, 11(707): 1-12.
doi: 10.3389/fpsyt.2020.00001
URL
|
[17] |
LU Q, LI H, LUO G, et al. Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: a dynamic causal modeling study on MEG[J]. Neuroscience Letters, 2012, 523(2): 125-130.
doi: 10.1016/j.neulet.2012.06.058
pmid: 22750155
|
[18] |
WARD M J, KARIM H T, JESSEN Z F, et al. Association between increased theta cordance and early response to ECT in late-life depression[J]. International Journal of Geriatric Psychiatry, 2020, 35(2): 147-152.
doi: 10.1002/gps.5220
pmid: 31617234
|
[19] |
严登俊, 李伟, 钱春发. 人体生物磁场检测技术及其医学临床应用[J]. 现代生物医学进展, 2007(3): 425-428.
|
[20] |
秦娅楠, 方云龙, 王明, 等. 肺磁图的研究进展[J]. 现代科学仪器, 2010, 132(4): 129-134.
|
[21] |
MAKIJARVI M, BROCKMEIER K, LEDER U, et al. New trends in clinical magnetocardiography. in: biomag 1996 proceedings of the 10th international conference on biomagnetism[M]. New York: Springer, 1999: 410-417.
|
[22] |
蔡宾. 心磁图仪: CCI心血管医生创新俱乐部[EB/OL]. (2021-12-03) [2023-12-22]. http://www.cn-healthcare.com/articlewm/20211203/content-1291639.html.
|
[23] |
KOMINIS IK, KORNACK TW, ALLRED JC, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422 (6932): 596-599.
doi: 10.1038/nature01484
|
[24] |
COHEN D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents[J]. Science, 1968, 161(3843): 784-786.
pmid: 5663803
|
[25] |
COHEN D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer[J]. Science, 1972, 175(4022): 664-666.
doi: 10.1126/science.175.4022.664
URL
|
[26] |
盛经纬, 高家红. 脑磁图仪的前世今生与未来[J]. 物理, 2021, 50(7):463-469.
|
[27] |
中科智汇广场. 原子磁力计脑磁图产业化: 中国科学院生物物理研究所[EB/OL]. 2022[2023-05-20]. http://www.genfire.cn/smartAction/detail/35127.
|
[28] |
ROMBETTO S, GRANATA C, VETTOLIERE A, et al. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography[J]. Sensors (Basel), 2014, 14(7): 12114-12126.
doi: 10.3390/s140712114
URL
|
[29] |
BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555 (7698): 657-661.
doi: 10.1038/nature26147
URL
|
[30] |
智科院. 量子革命的新未来: 传感器的量子化[EB/OL]. (2022-05-04) [2023-05-20]. https://zhuanlan.zhihu.com/p/509071181.
|
[31] |
杨柳荣. 行业|脑磁图:探索生命禁区的新星![EB/OL]. (2020-02-26) [2023-05-20]. http://www.cn-healthcare.com/articlewm/20200226/content-1090858.html?appfrom=jkj.
|