Information and Communications Technology and Policy ›› 2023, Vol. 49 ›› Issue (7): 36-43.doi: 10.12267/j.issn.2096-5931.2023.07.005
Previous Articles Next Articles
FU Yaobin, ZHOU Hui
Received:
2023-06-12
Online:
2023-07-25
Published:
2023-08-03
CLC Number:
FU Yaobin, ZHOU Hui. Overview of hybrid quantum-classical computing development[J]. Information and Communications Technology and Policy, 2023, 49(7): 36-43.
[1] | ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 50510. |
[2] |
WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(18): 180501.
doi: 10.1103/PhysRevLett.127.180501 URL |
[3] |
ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460.
doi: 10.1126/science.abe8770 URL |
[4] |
DENG Y H, GONG S Q, GU Y C, et al. Solving graph problems using gaussian boson sampling[J]. Physical Review Letters, 2023, 130(19): 190601.
doi: 10.1103/PhysRevLett.130.190601 URL |
[5] | GOTTESMAN D. An introduction to quantum error correction and fault-tolerant quantum computation[C]// Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, 2010(68):13-58. |
[6] |
JIA Z, FU Y, CAO Z, et al. Superconducting and silicon-based semiconductor quantum computers: a review[J]. IEEE Nanotechnology Magazine, 2022, 16(4):9-10.
doi: 10.1109/MNANO.2022.3195077 URL |
[7] |
ZHAO Y, YE Y, HUANG H-L, et al. Realization of an error-correcting surface code with superconducting qubits[J]. Physical Review Letters, 2022, 129(3):030501.
doi: 10.1103/PhysRevLett.129.030501 URL |
[8] |
ACHARYA R, ALEINER I, ALLEN R, et al. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 2023, 614(7949): 676-681.
doi: 10.1038/s41586-022-05434-1 |
[9] | GOUZIEN E, SANGOUARD N. Factoring 2048-bit RSA integers in 177 days with 13-436 qubits and a multimode memory[J]. Physical Review Letters, 2021, 127(14): 09749. |
[10] | YAN B, TAN Z, WEI S, et al. Factoring integers with sublinear resources on a superconducting quantum processor[J]. ArXiv Preprint ArXiv:221212372, 2022. |
[11] | PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2. |
[12] | BINOSI T C, COLIN DE VERDIèRE G, CORNI S, et al. European quantum computing & simulation infrastructure[R], 2022. |
[13] | UNDERTAKING E H P C J. Selection of six sites to host the first European quantum computers[Z], 2022. |
[14] | FEYNMAN R P. Simulating physics with computers[M]. Feynman and Computation CRC Press, 1982. |
[15] | SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, 1994: 124-134. |
[16] | GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, 1996: 212-219. |
[17] |
BENNETT C H, BERNSTEIN E, BRASSARD G, et al. Strengths and weaknesses of quantum computing[J]. SIAM Journal on Computing, 1997, 26(5): 1510.
doi: 10.1137/S0097539796300933 URL |
[18] | CORRIGAN-GIBBS H, WU D J, BONEH D. Quantum operating systems[C]// Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017: 76-81. |
[19] |
YANG C H, LEON R C C, HWANG J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin[J]. Nature, 2020, 580(7803): 350-354.
doi: 10.1038/s41586-020-2171-6 |
[20] | PETIT L, RUSS M, EENINK H, et al. High-fidelity two-qubit gates in silicon above one Kelvin[J]. ArXiv Preprint ArXiv:2007.09034, 2020. |
[21] | ZHANG G, LIN H, WANG C. Acalibration-free 12. 8-16.5 GHz cryogenic CMOS VCO with 202dBc/Hz FoM for classic-quantum interface[C]// 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2023: 512-514. |
[22] |
XUE X, PATRA B, VAN DIJK J P G, et al. CMOS-based cryogenic control of silicon quantum circuits[J]. Nature, 2021, 593(7858): 205-210.
doi: 10.1038/s41586-021-03469-4 |
[23] | CHARBON E. Cryo-CMOS circuits and systems for scalable quantum computing, in 2017 IEEE international solid-state circuits conference (ISSCC)[Z], 2017. |
[24] | KANG K, MINN D, BAE S, et al. A cryo-CMOS controller IC with fully integrated frequency generators for superconducting qubits[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2022(65): 362-364. |
[25] | FRANK D J, CHAKRABORTY S, TIEN K, et al. A cryo-CMOS low-power semi-autonomous qubit state controller in 14nm FinFET technology[C]// 2022 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2022(65): 360-362. |
[26] |
BARDIN J C, WHITE T, GIUSTINA M, et al. Design and characterization of a 28-nm Bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K[J]. IEEE Journal of Solid-State Circuits, 2019, 54(11): 3043-3060.
doi: 10.1109/JSSC.4 URL |
[27] | PARK J S, SUBRAMANIAN S, LAMPERT L, et al. A fully integrated cryo-CMOS SoC for qubit control in quantum computers capable of state manipulation, readout and high-speed gate pulsing of spin qubits in Intel 22nm FFL FinFET technology[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2021(64): 208-210. |
[28] | GUO Y, LI Y, HUANG W, et al. A polar-modulation-based cryogenic qubit state controller in 28nm bulk CMOS[C]// 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2023: 508-510. |
[29] | PATRA B, VAN DIJK J P G, SUBRAMANIAN S, et al. A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers[C]// 2020 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2020: 304-306. |
[30] |
GONZALEZ-ZALBA M F, DE FRANCESCHI S, CHARBON E, et al. Scaling silicon-based quantum computing using CMOS technology[J]. Nature Electronics, 2021, 4(12): 872-884.
doi: 10.1038/s41928-021-00681-y |
[31] | NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantum processors[J]. Nature Electronics, 2023: 1-7. |
[32] | KANNAN B, ALMANAKLY A, SUNG Y, et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics[J]. Nature Physics, 2023: 1-7. |
[33] | AKHTAR M, BONUS F, LEBRUN-GALLAGHER F, et al. A high-fidelity quantum matter-link between ion-trap microchip modules[J]. Nature Communications, 2023, 14(1). |
[34] |
KUMAR A, SULEYMANZADE A, STONE M, et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms[J]. Nature, 2023, 615(7953): 614-619.
doi: 10.1038/s41586-023-05740-2 |
[35] | CRAWFORD O, VAN STRAATEN B, WANG D, et al. Efficient quantum measurement of pauli operators in the presence of finite sampling error[J]. Quantum, 2021, 5. |
[36] | CRUISE J R, GILLESPIE N I, REID B. Practical quantum computing: the value of local computation[J]. ArXiv Preprint ArXiv:2009.08513, 2020. |
[37] | ENDER K, HOEVEN R, NIEHOFF B E, et al. Parity quantum optimization: compiler[J]. ArXiv Preprint ArXiv: 2015.06233, 2021. |
[38] | FELLNER M, ENDER K, TER HOEVEN R, et al. Parity quantum optimization: benchmarks[J]. ArXiv Preprint ArXiv: 2015.06240, 2021. |
[39] |
FELLNER M, MESSINGER A, ENDER K, et al. Applications of universal parity quantum computation[J]. Physical Review A, 2022, 106(4): 042442.
doi: 10.1103/PhysRevA.106.042442 URL |
[40] |
FELLNER M, MESSINGER A, ENDER K, et al. Universal parity quantum computing[J]. Physical Review Letters, 2022, 129(18): 180503.
doi: 10.1103/PhysRevLett.129.180503 URL |
[41] | 窦星磊, 刘磊, 陈岳涛. 面向超导量子计算机的程序映射技术研究[J]. 计算机研究与发展, 2021, 58(9):1856-1874. |
[42] | KONG W, WANG J, HAN Y, et al. Origin pilot: a quantum operating system for effecient usage of quantum resources[J]. ArXiv Preprint ArXiv:2105.10730, 2021. |
[43] | CHEN Z Y, GUO G P. Qrunes: high-level language for quantum-classical hybrid programming[J]. ArXiv Preprint ArXiv:1901.08340, 2019. |
[44] | MCKINSEY. Quantum technology monitor[R], 2023. |
[45] | MEUER H, STROHMAIER E, DONGARRA J, et al. The 61st edition of the TOP500[Z], 2023. |
[46] | 中国信息通信研究院. 数据中心白皮书[R], 2022. |
[1] | ZHAO Wending, CAI Minglei, MEI Quanxin, YAO Lin, YANG Haoxiang. Research and application of trapped-ion quantum computing [J]. Information and Communications Technology and Policy, 2023, 49(7): 17-26. |
[2] | LI Zhuoying, DENG Ziyi, ZHOU Zhuojun, QIU Daowen, ZHU Feng, LUO Le. Development and application of distributed quantum computing with trapped ions [J]. Information and Communications Technology and Policy, 2023, 49(7): 2-8. |
[3] | ZHANG Meng, WANG Jing, ZHAO Wenyu, ZHANG Haiyi. Architecture and development of quantum computing cloud platform [J]. Information and Communications Technology and Policy, 2023, 49(7): 27-35. |
[4] | WANG Jing, ZHANG Meng, LI Fang, ZHANG Haiyi. Analysis of technology and application development of quantum computing [J]. Information and Communications Technology and Policy, 2023, 49(7): 9-16. |
[5] | WANG Jing, LI Hongyang, ZHAO Wenyu. Analysis of the technology research and application exploration of quantum computing [J]. Information and Communications Technology and Policy, 2022, 48(7): 20-27. |
[6] | WANG Xinwen, JIN Xianmin. Research and application of photonic quantum computing [J]. Information and Communications Technology and Policy, 2022, 48(7): 37-42. |
[7] | ZHANG Meng, LAI Junsen, ZHANG Haiyi, ZHAO Xin. Research and development trend of quantum computing benchmarking [J]. Information and Communications Technology and Policy, 2022, 48(7): 44-51. |
[8] | HU Weiwu, GAO Xiang, ZHANG Ge. Building the software ecosystem for the Loongson instruction set architecture [J]. Information and Communications Technology and Policy, 2022, 48(4): 43-48. |
[9] | FAN Songtao, HAO Haisheng. Research on spacecraft digital twin system technology based on model operating system [J]. Information and Communications Technology and Policy, 2021, 47(9): 8-15. |
[10] | LYU Bo, LAI Junsen. Quantum computing standardization progress [J]. Information and Communications Technology and Policy, 2020, 46(7): 38-42. |
[11] | CUI Ziwei, WANG Weiyu, YUNG Man Hong, . The status and development of quantum computation cloud platform [J]. Information and Communications Technology and Policy, 2020, 46(7): 43-48. |
[12] | ZHAO Yongjie, WU Wei. Quantum software and quantum cloud [J]. Information and Communications Technology and Policy, 2020, 46(7): 49-57. |
[13] | LIU Zishan. The potential application of quantum computing in the communication networks [J]. Information and Communications Technology and Policy, 2020, 46(7): 57-63. |
[14] | ZHANG Qian, LI Wenyu. Insights into the development of global quantum information innovation [J]. Information and Communications Technology and Policy, 2020, 46(12): 81-85. |
[15] | WANG Qiong, SU Dan. Research on the development of smart and connected vehicle operating system [J]. Information and Communications Technology and Policy, 2019, 45(9): 57-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn