[1] |
Supernova Partners Acquisition Company II. Rigetti computing announces commercial availability of 80-qubit aspen-m system and results of CLOPS speed tests[EB/OL]. (2022-02-15) [2023-05-29]. https://www.globenewswire.com/news-release/2022/02/15/2385386/0/en/Rigetti-Computing-Announces.
|
[2] |
IBM. Expanding the IBM quantum roadmap to anticipate the future of quantum-centric supercomputing[EB/OL]. (2022-05-10) [2023-05-29]. https://research.ibm.com/blog/ibm-quantum-roadmap-2025.
|
[3] |
BAO F, DENG H, DING D, et al. Fluxonium: an alternative qubit platform for high-fidelity operations[J]. Physical Review Letters, 2022, 129(1): 010502.
doi: 10.1103/PhysRevLett.129.010502
URL
|
[4] |
MADZIK M T, ASAAD S, YOUSSRY A, et al. Precision tomography of a three-qubit donor quantum processor in silicon[J]. Nature, 2022, 601(7893): 348-353.
doi: 10.1038/s41586-021-04292-7
|
[5] |
XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343-347.
doi: 10.1038/s41586-021-04273-w
|
[6] |
NOIRI A, TAKEDA K, NAKAJIMA T, et al. Fast universal quantum gate above the fault-tolerance threshold in silicon[J]. Nature, 2022, 601(7893): 338-342.
doi: 10.1038/s41586-021-04182-y
|
[7] |
PHILIPS S G J, MADZIK M T, AMITONOV S V, et al. Universal control of a six-qubit quantum processor in silicon[J]. Nature, 2022, 609(7929): 919-924.
doi: 10.1038/s41586-022-05117-x
|
[8] |
IONQ. IonQ forte: the first software-configurable quantum computer[EB/OL]. (2023-03-03) [2023-05-29]. https://ionq.com/resources/ionq-forte-first-configurable-quantum-computer.
|
[9] |
Quantinuum. Quantinuum sets new record with highest ever quantum volume[EB/OL]. (2022-09-27) [2023-05-29]. https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume.
|
[10] |
MADSEN L S, LAUDENBACH F, ASKARANI M F, et al. Quantum computational advantage with a programmable photonic processor[J]. Nature, 2022, 606(7912): 75-81.
doi: 10.1038/s41586-022-04725-x
|
[11] |
THOMAS P, RUSCIO L, MORIN O, et al. Efficient generation of entangled multiphoton graph states from a single atom[J]. Nature, 2022, 608(7924): 677-681.
doi: 10.1038/s41586-022-04987-5
|
[12] |
SINGH K, ANAND S, POCKLINGTON A, et al. Dual-element, two-dimensional atom array with continuous-mode operation[J]. Physical Review X, 2022, 12(1): 011040.
doi: 10.1103/PhysRevX.12.011040
URL
|
[13] |
MADSEN L S, LAUDENBACH F, ASKARANI M F, et al. Quantum computational advantage with a programmable photonic processor[J]. Nature, 2022, 606(7912): 75-81.
doi: 10.1038/s41586-022-04725-x
|
[14] |
中国信息通信研究院. 量子信息技术发展与应用研究报告(2022)[R], 2022.
|
[15] |
ITU-T. Technical report FG QIT4N D1.2 quantum information technology for networks use cases: network aspects of quantum information technologies[R], 2021.
|
[16] |
GOTTESMAN D, CHUANG I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations[J]. Nature, 1999, 402(6760): 390-393.
doi: 10.1038/46503
|
[17] |
NIELSEN M A. Quantum computation by measurement and quantum memory[J]. Physics Letters A, 2003, 308(2-3): 96-100.
doi: 10.1016/S0375-9601(02)01803-0
URL
|
[18] |
LEUNG D W. Quantum computation by measurements[J]. International Journal of Quantum Information, 2004, 2(1): 33-43.
doi: 10.1142/S0219749904000055
URL
|
[19] |
RAUSSENDORF R, BRIEGEL H J. A one-way quantum computer[J]. Physical Review Letters, 2001, 86(22): 5188.
pmid: 11384453
|
[20] |
BRIEGEL H J, BROWNE D E, DUR W, et al. Measurement-based quantum computation[J]. Nature Physics, 2009, 5(1): 19-26.
doi: 10.1038/nphys1157
|
[21] |
BROADBENT A, FITZSIMONS J, KASHEFI E. Universal blind quantum computation[C]// 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2009: 517-526.
|