Information and Communications Technology and Policy ›› 2023, Vol. 49 ›› Issue (7): 17-26.doi: 10.12267/j.issn.2096-5931.2023.07.003
Previous Articles Next Articles
ZHAO Wending, CAI Minglei, MEI Quanxin, YAO Lin, YANG Haoxiang
Received:
2023-06-10
Online:
2023-07-25
Published:
2023-08-03
CLC Number:
ZHAO Wending, CAI Minglei, MEI Quanxin, YAO Lin, YANG Haoxiang. Research and application of trapped-ion quantum computing[J]. Information and Communications Technology and Policy, 2023, 49(7): 17-26.
[1] | HOROWITZ M, GRUMBLING E, National Academies of Sciences, et al. Quantum computing: progress and prospects[M]. The National Academies Press, 2019. |
[2] |
BENIOFF P. The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines[J]. Journal of Statistical Physics, 1980, 22(5):563-591.
doi: 10.1007/BF01011339 URL |
[3] |
FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6):467-488.
doi: 10.1007/BF02650179 URL |
[4] | SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[J]. IEEE, 1994:124-134. |
[5] |
CIRAC J I, ZOLLER P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74(20):4091.
pmid: 10058410 |
[6] | DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783. |
[7] |
AN F A, RANSFORD A, SCHAFFER A, et al. High fidelity state preparation and measurement of ion hyperfine qubits with I> 12[J]. Physical Review Letters, 2022, 129(13): 130501.
doi: 10.1103/PhysRevLett.129.130501 URL |
[8] |
WANG P, LUAN C Y, QIAO M, et al. Single ion qubit with estimated coherence time exceeding one hour[J]. Nature Communications, 2021, 12(1): 233.
doi: 10.1038/s41467-020-20330-w pmid: 33431845 |
[9] |
SCHAFER V M, BALLANCE C J, THIRUMALAI K, et al. Fast quantum logic gates with trapped-ion qubits[J]. Nature, 2018, 555(7694): 75-78.
doi: 10.1038/nature25737 URL |
[10] |
HARTY T P, ALLCOCK D T C, BALLANCE C J, et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit[J]. Physical Review Letters, 2014, 113(22): 220501.
doi: 10.1103/PhysRevLett.113.220501 URL |
[11] |
SORENSEN A, MOLMER K. Quantum computation with ions in thermal motion[J]. Physical Review Letters, 1999, 82(9): 1971.
doi: 10.1103/PhysRevLett.82.1971 URL |
[12] |
MOLMER K, SORENSEN A. Multiparticle entanglement of hot trapped ions[J]. Physical Review Letters, 1999, 82(9): 1835.
doi: 10.1103/PhysRevLett.82.1835 URL |
[13] |
LEIBFRIED D, DEMARCO B, MEYER V, et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate[J]. Nature, 2003, 422(6930): 412-415.
doi: 10.1038/nature01492 URL |
[14] |
ZHU S L, MONROE C, DUAN L M. Trapped ion quantum computation with transverse phonon modes[J]. Physical Review Letters, 2006, 97(5): 050505.
doi: 10.1103/PhysRevLett.97.050505 URL |
[15] |
ZHU S L, MONROE C, DUAN L M. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams[J]. Europhysics Letters, 2006, 73(4): 485.
doi: 10.1209/epl/i2005-10424-4 URL |
[16] |
CHOI T, DEBNATH S, MANNING T A, et al. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement[J]. Physical Review Letters, 2014, 112(19): 190502.
doi: 10.1103/PhysRevLett.112.190502 URL |
[17] |
LU Y, ZHANG S, ZHANG K, et al. Global entangling gates on arbitrary ion qubits[J]. Nature, 2019, 572(7769): 363-367.
doi: 10.1038/s41586-019-1428-4 |
[18] |
GREEN T J, BIERCUK M J. Phase-modulated decoupling and error suppression in qubit-oscillator systems[J]. Physical Review Letters, 2015, 114(12): 120502.
doi: 10.1103/PhysRevLett.114.120502 URL |
[19] |
WANG Y, CRAIN S, FANG C, et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing[J]. Physical Review Letters, 2020, 125(15): 150505.
doi: 10.1103/PhysRevLett.125.150505 URL |
[20] |
LEUNG P H, LANDSMAN K A, FIGGATT C, et al. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force[J]. Physical Review Letters, 2018, 120(2): 020501.
doi: 10.1103/PhysRevLett.120.020501 URL |
[21] |
DEBNATH S, LINKE N M, FIGGATT C, et al. Demonstration of a small programmable quantum computer with atomic qubits[J]. Nature, 2016, 536(7614): 63-66.
doi: 10.1038/nature18648 |
[22] |
FIGGATT C, OSTRANDER A, LINKE N M, et al. Parallel entangling operations on a universal ion-trap quantum computer[J]. Nature, 2019, 572(7769): 368-372.
doi: 10.1038/s41586-019-1427-5 |
[23] |
GAEBLER J P, TAN T R, LIN Y, et al. High-fidelity universal gate set for be 9+ ion qubits[J]. Physical Review Letters, 2016, 117(6): 060505.
doi: 10.1103/PhysRevLett.117.060505 URL |
[24] |
CLARK C R, TINKEY H N, SAWYER B C, et al. High-fidelity bell-state preparation with ca+ 40 optical qubits[J]. Physical Review Letters, 2021, 127(13): 130505.
doi: 10.1103/PhysRevLett.127.130505 URL |
[25] |
KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconducting qubits[J]. Applied Physics Reviews, 2019, 6(2):021318.
doi: 10.1063/1.5089550 URL |
[26] |
SAFFMAN M, WALKER T G, MOLMER K. Quantum information with rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313.
doi: 10.1103/RevModPhys.82.2313 URL |
[27] | SOMOROFF A, FICHEUX Q, MENCIA R A, et al. Millisecond coherence in a superconducting qubit[J]. ArXiv Preprint ArXiv:2103.08578, 2021. |
[28] |
BARNES K, BATTAGLINO P, BLOOM B J, et al. Assembly and coherent control of a register of nuclear spin qubits[J]. Nature Communications, 2022, 13(1): 2779.
doi: 10.1038/s41467-022-29977-z pmid: 35589685 |
[29] |
BAO F, DENG H, DING D, et al. Fluxonium: an alternative qubit platform for high-fidelity operations[J]. Physical Review Letters, 2022, 129(1): 010502.
doi: 10.1103/PhysRevLett.129.010502 URL |
[30] |
MADJAROV I S, COVEY J P, SHAW A L, et al. High-fidelity entanglement and detection of alkaline-earth rydberg atoms[J]. Nature Physics, 2020, 16(8): 857-861.
doi: 10.1038/s41567-020-0903-z |
[31] |
GARCIA-RIPOLL J J, ZOLLER P, CIRAC J I. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing[J]. Physical Review Letters, 2003, 91(15): 157901.
doi: 10.1103/PhysRevLett.91.157901 URL |
[32] |
DUAN L M. Scaling ion trap quantum computation through fast quantum gates[J]. Physical Review Letters, 2004, 93(10): 100502.
doi: 10.1103/PhysRevLett.93.100502 URL |
[33] |
WONG-CAMPOS J D, MOSES S A, JOHNSON K G, et al. Demonstration of two-atom entanglement with ultrafast optical pulses[J]. Physical Review Letters, 2017, 119(23): 230501.
doi: 10.1103/PhysRevLett.119.230501 URL |
[34] |
WALTER T, KURPIERS P, GASPARINETTI S, et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits[J]. Physical Review Applied, 2017, 7(5): 054020.
doi: 10.1103/PhysRevApplied.7.054020 URL |
[35] |
JEFFREY E, SANK D, MUTUS J Y, et al. Fast accurate state measurement with superconducting qubits[J]. Physical Review Letters, 2014, 112(19): 190504.
doi: 10.1103/PhysRevLett.112.190504 URL |
[36] | CHEN L, LI H X, LU Y, et al. Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier[J]. NPJ Quantum Information, 2023, 9(1). |
[37] |
WU T Y, KUMAR A, GIRALDO F, et al. Stern-Gerlach detection of neutral-atom qubits in a state-dependent optical lattice[J]. Nature Physics, 2019, 15(6): 538-542.
doi: 10.1038/s41567-019-0478-8 |
[38] |
WINELAND D J, MONROE C, ITANO W M, et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions[J]. Journal of Research of the National Institute of Standards and Technology, 1998, 103(3): 259-328.
doi: 10.6028/jres.103.019 pmid: 28009379 |
[39] |
KIELPINSKI D, MONROE C, WINELAND D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 2002, 417(6890): 709-711.
doi: 10.1038/nature00784 |
[40] |
DUAN L M, MONROE C. Colloquium: quantum networks with trapped ions[J]. Reviews of Modern Physics, 2010, 82(2): 1209.
doi: 10.1103/RevModPhys.82.1209 URL |
[41] |
WU Y K, DUAN L M. A two-dimensional architecture for fast large-scale trapped-ion quantum computing[J]. Chinese Physics Letters, 2020, 37(7): 070302.
doi: 10.1088/0256-307X/37/7/070302 |
[42] |
WU Y K, LIU Z D, ZHAO W D, et al. High-fidelity entangling gates in a three-dimensional ion crystal under micromotion[J]. Physical Review A, 2021, 103(2): 022419.
doi: 10.1103/PhysRevA.103.022419 URL |
[43] |
PINO J M, DREILING J M, FIGGATT C, et al. Demonstration of the trapped-ion quantum CCD computer architecture[J]. Nature, 2021, 592(7853): 209-213.
doi: 10.1038/s41586-021-03318-4 |
[44] | MOSES S A, BALDWIN C H, ALLMAN M S, et al. A race track trapped-ion quantum processor[J]. ArXiv Preprint ArXiv:2305.03828, 2023. |
[45] |
BLINOV B B, MOEHRING D L, DUAN L M, et al. Observation of entanglement between a single trapped atom and a single photon[J]. Nature, 2004, 428(6979): 153-157.
doi: 10.1038/nature02377 |
[46] |
TAN T R, GAEBLER J P, LIN Y, et al. Multi-element logic gates for trapped-ion qubits[J]. Nature, 2015, 528(7582): 380-383.
doi: 10.1038/nature16186 |
[47] |
BALLANCE C J, SCHAFER V M, HOME J P, et al. Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes[J]. Nature, 2015, 528(7582): 384-386.
doi: 10.1038/nature16184 |
[48] |
HUGHES A C, SCHAFER V M, THIRUMALAI K, et al. Benchmarking a high-fidelity mixed-species entangling gate[J]. Physical Review Letters, 2020, 125(8): 080504.
doi: 10.1103/PhysRevLett.125.080504 URL |
[49] |
MOEHRING D L, MAUNZ P, OLMSCHENK S, et al. Entanglement of single-atom quantum bits at a distance[J]. Nature, 2007, 449(7158): 68-71.
doi: 10.1038/nature06118 |
[50] |
STEPHENSON L J, NADLINGER D P, NICHOL B C, et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network[J]. Physical Review Letters, 2020, 124(11): 110501.
doi: 10.1103/PhysRevLett.124.110501 URL |
[51] |
BERNIEN H, HENSEN B, PFAFF W, et al. Heralded entanglement between solid-state qubits separated by three metres[J]. Nature, 2013, 497(7447): 86-90.
doi: 10.1038/nature12016 |
[52] |
DELTEIL A, SUN Z, GAO W, et al. Generation of heralded entanglement between distant hole spins[J]. Nature Physics, 2016, 12(3): 218-223.
doi: 10.1038/NPHYS3605 |
[53] |
HOFMANN J, KRUG M, ORTEGEL N, et al. Heralded entanglement between widely separated atoms[J]. Science, 2012, 337(6090): 72-75.
doi: 10.1126/science.1221856 pmid: 22767924 |
[54] |
MAGNARD P, STORZ S, KURPIERS P, et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems[J]. Physical Review Letters, 2020, 125(26): 260502.
doi: 10.1103/PhysRevLett.125.260502 URL |
[55] | YOSHIMURA B, STORK M, DADIC D, et al. Creation of two-dimensional coulomb crystals of ions in oblate paul traps for quantum simulations[J]. EPJ Quantum Technology, 2015(2): 1-17. |
[56] |
RICHERME P. Two-dimensional ion crystals in radio-frequency traps for quantum simulation[J]. Physical Review A, 2016, 94(3): 032320.
doi: 10.1103/PhysRevA.94.032320 URL |
[57] |
WANG Y, QIAO M, CAI Z, et al. Coherently manipulated 2D ion crystal in a monolithic paul trap[J]. Advanced Quantum Technologies, 2020, 3(11): 2000068.
doi: 10.1002/qute.v3.11 URL |
[58] |
QIAO M, WANG Y, CAI Z, et al. Double-electromagnetically-induced-transparency ground-state cooling of stationary two-dimensional ion crystals[J]. Physical Review Letters, 2021, 126(2): 023604.
doi: 10.1103/PhysRevLett.126.023604 URL |
[59] |
KIESENHOFER D, HAINZER H, ZHDANOV A, et al. Controlling two-dimensional coulomb crystals of more than 100 ions in a monolithic radio-frequency trap[J]. PRX Quantum, 2023, 4(2): 020317.
doi: 10.1103/PRXQuantum.4.020317 URL |
[60] |
MAO Z C, XU Y Z, MEI Q X, et al. Experimental realization of multi-ion sympathetic cooling on a trapped ion crystal[J]. Physical Review Letters, 2021, 127(14): 143201.
doi: 10.1103/PhysRevLett.127.143201 URL |
[61] | DUAN L M. Robust gate design for large ion crystals through excitation of local phonon modes[J]. ArXiv Preprint ArXiv:2207.04583, 2022. |
[62] |
MONROE C, RAUSSENDORF R, RUTHVEN A, et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects[J]. Physical Review A, 2014, 89(2): 022317.
doi: 10.1103/PhysRevA.89.022317 URL |
[63] |
CHIAVERINI J, LEIBFRIED D, SCHAETZ T, et al. Realization of quantum error correction[J]. Nature, 2004, 432(7017): 602-605.
doi: 10.1038/nature03074 |
[64] |
SCHINDLER P, BARREIRO J T, MONZ T, et al. Experimental repetitive quantum error correction[J]. Science, 2011, 332(6033): 1059-1061.
doi: 10.1126/science.1203329 pmid: 21617070 |
[65] |
LINKE N M, GUTIERREZ M, LANDSMAN K A, et al. Fault-tolerant quantum error detection[J]. Science Advances, 2017, 3(10): e1701074.
doi: 10.1126/sciadv.1701074 URL |
[66] |
EGAN L, DEBROY D M, NOEL C, et al. Fault-tolerant control of an error-corrected qubit[J]. Nature, 2021, 598(7880): 281-286.
doi: 10.1038/s41586-021-03928-y |
[67] |
RYAN-ANDERSON C, BOHNET J G, LEE K, et al. Realization of real-time fault-tolerant quantum error correction[J]. Physical Review X, 2021, 11(4): 041058.
doi: 10.1103/PhysRevX.11.041058 URL |
[68] |
POSTLER L, HEUBEN S, POGORELOV I, et al. Demonstration of fault-tolerant universal quantum gate operations[J]. Nature, 2022, 605(7911): 675-680.
doi: 10.1038/s41586-022-04721-1 |
[69] | RYAN-ANDERSON C, BROWN N C, ALLMAN M S, et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code[J]. ArXiv Preprint ArXiv:2208.01863, 2022. |
[70] | EZRATTY O. Where are we heading with NISQ?[J]. ArXiv Preprint ArXiv:2305.09518, 2023. |
[71] | PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018(2):79. |
[72] |
BHARTI K, CERVERA-LIERTA A, KYAW T H, et al. Noisy intermediate-scale quantum algorithms[J]. Reviews of Modern Physics, 2022, 94(1): 015004.
doi: 10.1103/RevModPhys.94.015004 URL |
[73] |
CEREZO M, ARRASMITH A, BABBUSH R, et al. Variational quantum algorithms[J]. Nature Reviews Physics, 2021, 3(9): 625-644.
doi: 10.1038/s42254-021-00348-9 |
[74] |
DAS A, CHAKRABARTI B K. Colloquium: quantum annealing and analog quantum computation[J]. Reviews of Modern Physics, 2008, 80(3): 1061.
doi: 10.1103/RevModPhys.80.1061 URL |
[75] |
HARR0W A W, HASSIDIM A, Lloyd S. Quantum algorithm for linear systems of equations[J]. Physical Review Letters, 2009, 103(15):150502.
doi: 10.1103/PhysRevLett.103.150502 URL |
[76] | FARHI E, GOLDSTONE J, GUTMANN S. A quantum approximate optimization algorithm[J]. ArXiv Preprint ArXiv:1411.4028, 2014. |
[77] |
PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature Communications, 2014, 5(1): 4213.
doi: 10.1038/ncomms5213 |
[78] | 华翊博奥北京量子科技有限公司. 一种寻址操控系统和寻址操控方法:中国, ZL202110047218.2[P], 2022-10-25. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn