[1] |
General. Data protection regulation [EB / OL]. (2018)[2021-03-20]. https:/ / eur-lex. europa. eu / legal-content /EN / TXT / PDF / ? uri =CELEX:32016R0679.
|
[2] |
Mcmahan H B, Moore E, Ramage D, et al.Federatedlearning of deep networks using model averaging
|
[C] |
Proceedings of the 20 th International Conference on Artificial Intelligence and Statistics ( AISTATS ),
|
|
2017.
|
[3] |
YANG Q, LIU Y, CHEN T, et al. Federated machine learning: conceptand applications [ C ]. arXiv, 2019:
|
19 |
02. 04885.
|
[4] |
Kairouz P, McMahan H B, Avent B, et al. Advances and openproblems in federated learning[C]. ACM Transactions
|
|
on Intelligent Systems and Technology ( TIST ), 2019(12).
|
[5] |
Hard A, Rao K, Mathews R, et al. Federated learning for mobile keyboardprediction [ C ]. arXiv, 2018: 1811.03604.
|
[6] |
Bonawitz Keith, Ivanov Vladimir, Kreuter Ben, et al.Practicalsecure aggregation for privacy-preserving machine learning[C]. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17). Association for Computing Machinery, New York, NY, USA, 2017:1175 – 1191.
|
[ 7 ] |
McMahan H B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from
|
|
decentralizeddata [ C ], Proceedings of the 20th International Conference on ArtificialIntelligence and
|
|
Statistics, AISTATS, 2017.
|
[8] |
YIN Hongxu, Arun Mallya, Arash Vahdat, et al. See through gradients: image batch recovery via gradInversion[C]. arXiv preprint arXiv, 2021:07586.
|
[9] |
Wei K, Li J, Ding M, et al. Federated learning with differential privacy: algorithms and performance analysis
|
[C] |
, IEEE Transactions on Information Forensics and Security, 2020(15): 3454-3469.
|
[10] |
Yang L , Chen T , Qiang Y. Secure federated transfer learning[C], ArXiv, abs / 1812. 03337.
|
[11] |
Sharma S , Chaoping X , Liu Y , et al. Secure and efficient federated transfer learning [ C ] / / 2019 IEEE
|
|
International Conference on Big Data, 2569-2576.
|
[12] |
Paillier P. Public-key cryptosystems based on composite degree residuosity classes[C]. Proc EUROCRYPT99, Czech Republic, 1999.
|
[13] |
Beaver D. Efficient Multiparty Protocols Using Circuit Randomization [ C ] / / Advances in Cryptology- CRYPTO91, 11th Annual International Cryptology Conference, 1991(8):11-15.
|