Information and Communications Technology and Policy ›› 2025, Vol. 51 ›› Issue (7): 70-77.doi: 10.12267/j.issn.2096-5931.2025.07.009
Previous Articles Next Articles
CAI Mingcheng1, ZHAO Long2, SUN Feng1, XU Kebiao1
Received:2025-06-06
Online:2025-07-25
Published:2025-08-04
CLC Number:
CAI Mingcheng, ZHAO Long, SUN Feng, XU Kebiao. Industrialization of quantum sensing: technology breakthroughs and integration of multi-field application scenarios[J]. Information and Communications Technology and Policy, 2025, 51(7): 70-77.
| [1] | 中国科学院网信工作网. 欧盟正式启动量子技术旗舰计划[EB/OL]. (2025-03-01)[2025-05-12]. https://ecas.cas.cn/xxkw/kbcd/201115_127114/ml/xxhzlyzc/201811/t20181101_4937625.html. |
| [2] | 中国科学院量子信息与量子科技创新研究院. 印度启动国家量子任务,投入7.26亿美元[EB/OL]. (2024-05-24)[2025-05-12]. https://www.quantumcas.ac.cn/2024/0530/c24874a642460/page.htm. |
| [3] | ICV Tank. 2025 global quantum sensing industry development outlook[EB/OL]. (2025-03-01)[2025-05-12]. https://www.icvtank.com/newsinfo/1007661.html. |
| [4] | BEEHLER R E, GLAZE D J. The performance and capability of cesium beam frequency standards at the national bureau of standards[J]. IEEE Transactions on Instrumentation and Measurement, 1966, 15(1/2): 48-55. |
| [5] | LI R, GIBBLE K, SZYMANIEC K. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts[J]. Metrologia, 2011, 48(5): 283. |
| [6] | WEYERS S, GERGINOV V, NEMITZ N, et al. Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2[J]. Metrologia, 2012, 49(1): 82. |
| [7] | BLOOM B J, NICHOLSON T L, WILLIAMS J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506(7486): 71-75. |
| [8] | MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87-90. |
| [9] | LU B K, SUN Z, YANG T, et al. Improved evaluation of BBR and collisional frequency shifts of NIM-Sr2 with 7.2 × 10-18 total uncertainty[J]. Chinese Physics Letters, 2022, 39(8): 080601. |
| [10] | HUANG Y, ZHANG B, ZENG M, et al. Liquid-nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18[J]. Physical Review Applied, 2022, 17(3): 034041. |
| [11] | CUI K, CHAO S, SUN C, et al. Evaluation of the systematic shifts of a 40Ca+ - 27Al+ optical clock[J]. arXiv Preprint, arXiv: 2012. 05496, 2022. |
| [12] | ZHANG C, OOI T, HIGGINS J S, et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock[J]. Nature, 2024, 633(8028): 63-70. |
| [13] | SHEN Q, GUAN J Y, REN J G, et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 2022, 610(7933): 661-666. |
| [14] | 人民网. 世界首台量子电流互感器在合肥挂网运行[EB/OL]. (2022-09-14)[2025-05-12]. http://ah.people.com.cn/n2/2022/0914/c227767-40123837.html. |
| [15] | 人民网. 国内首座量子应用示范变电站建成投用[EB/OL]. (2024-11-29)[2025-05-12]. http://ah.people.com.cn/n2/2024/1129/c358428-41059593.html. |
| [16] | 李天研. 世界首套特高压直流量子电流传感器投运[EB/OL]. (2025-04-09)[2025-05-12]. https://paper.people.com.cn/zgnyb/pad/content/202504/14/content_30068716.html. |
| [17] | 央广网. 新能源汽车崛起有何深意[EB/OL]. (2024-03-09)[2025-05-12].https://auto.cnr.cn/yc/20240309/t20240309_526621575.shtml. |
| [18] | SNE Research. Global LIB ESS market expected to reach 235 GWh in 2024, a 27% YoY growth[EB/OL].(2024-02-05)[2025-05-12]. https://www.sneresearch.com/en/insight/release_view/219/page/96?s_cat=|&s_keyword=#ac_id. |
| [19] |
HATANO Y, SHIN J, TANIGAWA J, et al. High-precision robust monitoring of charge/discharge current over a wide dynamic range for electric vehicle batteries using diamond quantum sensors[J]. Scientific Reports, 2022, 12(1): 13991.
doi: 10.1038/s41598-022-18106-x pmid: 36068253 |
| [20] | 吴德伟, 苗强, 何思璇, 等. 量子传感的导航应用研究现状与展望[J]. 空军工程大学学报:自然科学版, 2021, 22(6): 67-76. |
| [21] | STRAND S, LUTTER W, STRASBURGER J F, et al. Low-cost fetal magnetocardiography: a comparison of superconducting quantum interference device and optically pumped magnetometers[J]. Journal of the American Heart Association, 2019, 8(16): e013436. |
| [22] | BROSER P J, KNAPPE S, KAJAL D S, et al. Optically pumped magnetometers for magneto-myography to study the innervation of the hand[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(11): 2226-2230. |
| [23] |
SAKAKI K, HOSHINO Y, KAWABATA S, et al. Evaluation of neural activity by magnetospinography with 3D sensors[J]. Clinical Neurophysiology, 2020, 131(6): 1252-1266.
doi: S1388-2457(20)30093-6 pmid: 32299009 |
| [24] | SANDER T, JODKO-WŁADZIŃSKA A, HARTWIG S, et al. Optically pumped magnetometers enable a new level of biomagnetic measurements[J]. Advanced Optical Technologies, 2020, 9(5): 247-251. |
| [25] | HAO N, ZHANG J X J. Magnetic nanotechnology for circulating tumor biomarkers screening: rational design, microfluidics integration and applications[J]. Biomicrofluidics, 2019, 13(5): 051501. |
| [26] | CHEN S, LI W, ZHENG X, et al. Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond[J]. Proceedings of the National Academy of Sciences, 2022, 119(5): e2118876119. |
| [27] |
WISSBERG S, RONEN M, OREN Z, et al. Sensitive readout for microfluidic high-throughput applications using scanning SQUID microscopy[J]. Scientific Reports, 2020, 10(1): 1573.
doi: 10.1038/s41598-020-58307-w pmid: 32005843 |
| [28] | YANG K, CHEN H, KONG X, et al. Weakly damped SQUID gradiometer with low crosstalk for magnetocardiography measurement[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(8): 1-5. |
| [29] | TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816. |
| [30] | TRABALDO E, ARPAIA R, ARZEO M, et al. Transport and noise properties of YBCO nanowire based nanoSQUIDs[J]. Superconductor Science and Technology, 2019, 32(7): 073001. |
| [31] |
TIERNEY T M, HOLMES N, MELLOR S, et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199:598-608.
doi: S1053-8119(19)30455-0 pmid: 31141737 |
| [32] | FAGALY R L. Superconducting quantum interference device instruments and applications[J]. Review of Scientific Instruments, 2006, 77(10): 1-15. |
| [33] | FALEY M I, DAMMERS J, MASLENNIKOV Y V, et al. High-Tc SQUID biomagnetometers[J]. Superconductor Science and Technology, 2017, 30(8): 083001. |
| [34] | VRBA J, ROBINSON S E. SQUID sensor array configurations for magnetoencephalography applications[J]. Superconductor Science and Technology, 2002, 15(9): R51. |
| [35] | BORNA A, CARTER T R, COLOMBO A P, et al. Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system[J]. PLOS One, 2020, 15(1): e0227684. |
| [36] |
PELLICCIONE M, JENKINS A, OVARTCHAIYAPONG P, et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor[J]. Nature Nanotechnology, 2016, 11(8): 700-705.
doi: 10.1038/nnano.2016.68 pmid: 27136130 |
| [37] | WU Y, JELEZKO F, PLENIO M B, et al. Diamond quantum devices in biology[J]. Angewandte Chemie International Edition, 2016, 55(23): 6586-6598. |
| [38] | BARRY J F, TURNER M J, SCHLOSS J M, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): 14133-14138. |
| [39] | LIU C F, LEONG W H, XIA K, et al. Ultra-sensitive hybrid diamond nanothermometer[J]. National Science Review, 2020, 8(5): nwaa194. |
| [40] | ZHANG Q, YIN J, YAN Y, et al. Biocompatible nanotomography of tightly focused light[J]. Nano Letters, 2022, 22(5): 1851-1857. |
| [41] | ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(1): 012002. |
| [42] | HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. |
| [43] | 李红雨, 曹诚, 李凤婷, 等. 航空、航海重力和重力梯度在海洋、未知陆地战略勘探的发展[J]. 地球物理学进展, 2019, 34(1): 316-325. |
| [44] |
朱栋, 高世腾, 朱欣欣, 等. 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021, 36(5): 480-489.
doi: 10.11867/j.issn.1001-8166.2021.034 |
| [45] | STRAY B, LAMB A, KAUSHIK A, et al. Quantum sensing for gravity cartography[J]. Nature, 2022, 602(7898): 590-594. |
| [46] | LENG Y, CHEN Y, LI R, et al. Measurement of the earth tides with a diamagnetic-levitated micro-oscillator at room temperature[J]. Physical Review Letters, 2024, 132(12): 123601. |
| [47] | ZHAI C, WANG J, ZHOU J, et al. Airborne absolute gravity measurements based on quantum gravimeter[J]. Acta Physica Sinica, 2025, 74(7): 070302. |
| [1] | LUAN Yan, MENG Xiangxi. The integration of large AI models and new industrialization: paths and challenges [J]. Information and Communications Technology and Policy, 2025, 51(1): 76-82. |
| [2] | JIA Chunyang, CHEN Xuehua, CONG Nan, LUO Wenhao, ZHANG Xiaonan, YANG Renfu. Rydberg atomic electromagnetic detection technology and application [J]. Information and Communications Technology and Policy, 2024, 50(7): 85-96. |
| [3] | LI Lun, GUO Yingnan, WANG Zixuan. Large model intelligent computing infrastructure reinforces the enabling foundation for new industrialization [J]. Information and Communications Technology and Policy, 2024, 50(12): 2-6. |
| [4] | QU Jiang, ZHANG Yi. Research on application cases and path of artificial intelligence in industry [J]. Information and Communications Technology and Policy, 2024, 50(12): 51-57. |
| [5] | SUN Xiaotong, GUO Sumin. Dilemma and resolution of data governance when embedding artificial intelligence into new industrialization [J]. Information and Communications Technology and Policy, 2024, 50(12): 7-12. |
| [6] | GAO Xinbo, ZHANG Su, LI Xiaolong, LU Yaguang. Digital transformation of energy promotes green and low-carbon development of China’s industry when pursuing the dual carbon goals [J]. Information and Communications Technology and Policy, 2024, 50(10): 28-34. |
| [7] | WANG Yong, ZHU Jianyu, ZHANG Haifeng. Research on the development framework and trend of digital economy [J]. Information and Communications Technology and Policy, 2023, 49(1): 2-6. |
| [8] | LI Bowen, MENG Jing, LI Juan. SOI technology and industry development research [J]. Information and Communications Technology and Policy, 2022, 48(4): 57-60. |
| [9] | NI Dong, HUO Ru, ZHANG Yuwen, HUANG Tao. Research on new identity resolution technology [J]. Information and Communications Technology and Policy, 2022, 48(10): 43-51. |
| [10] | Shuaizheng LI, Zhenghao DONG, Chengming DENG. Thinking on the structure and connotation the digital economy in the 14th Five-Year Plan period [J]. Information and Communications Technology and Policy, 2022, 48(1): 24-31. |
| [11] | ZHANG Meng, LAI Junsen. Research progress and application analysis of quantum sensing [J]. Information and Communications Technology and Policy, 2021, 47(9): 72-78. |
| [12] | HE Wei. Overview of China's digital economy development [J]. Information and Communications Technology and Policy, 2021, 47(2): 1-7. |
| [13] | LYU Bo, LAI Junsen. Quantum computing standardization progress [J]. Information and Communications Technology and Policy, 2020, 46(7): 38-42. |
| [14] | SHI Yanlong. Research on the development of digital economy in Inner Mongolia [J]. Information and Communications Technology and Policy, 2020, 46(6): 67-72. |
| [15] | ZHU Xinyue, XING Liyun, SHEN Qi. Development status and planning suggestions of digital economy in cities [J]. Information and Communications Technology and Policy, 2020, 46(11): 62-65. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn
