Information and Communications Technology and Policy ›› 2024, Vol. 50 ›› Issue (7): 85-96.doi: 10.12267/j.issn.2096-5931.2024.07.011
JIA Chunyang1,2,3, CHEN Xuehua1,2,3, CONG Nan1, LUO Wenhao1, ZHANG Xiaonan1, YANG Renfu1
Received:2024-06-12
Online:2024-07-25
Published:2024-07-30
Contact:
YANG Renfu
CLC Number:
JIA Chunyang, CHEN Xuehua, CONG Nan, LUO Wenhao, ZHANG Xiaonan, YANG Renfu. Rydberg atomic electromagnetic detection technology and application[J]. Information and Communications Technology and Policy, 2024, 50(7): 85-96.
| 效应 | 描述 | AT分裂 | 错误类型 | EIT峰幅度 | 错误类型 |
|---|---|---|---|---|---|
| 恒定磁场 | 过渡偶极污染(~μBB/ΔEfs) | 1% | 系统性 | 1% | 系统性 |
| 恒定电场 | 过渡偶极污染(~αE2/ΔEfs) | 0.001% | 系统性 | 0.001% | 系统性 |
| 蒸汽压/密度变化 | 吸收变化 | NA | — | 0.01% | 系统性 |
| 微波源频率 | MW源频率的不确定性 | 0.55% | 系统性 | NA | — |
| 微波源振幅 | 低MW场下振幅的不确定性 | NA | — | 4.4% | 系统性 |
| 双光子失调噪声 (200 kHz) | 耦合和探测激光之间的 相对失调噪声 | NA | — | 0.4% | 统计性 |
| 来自激光强度和探测 的技术噪声 | 拟合峰分离或高度的 统计噪声 | 0.5% | 统计性 | 约1%~7% | 统计性 |
| 效应 | 描述 | AT分裂 | 错误类型 | EIT峰幅度 | 错误类型 |
|---|---|---|---|---|---|
| 恒定磁场 | 过渡偶极污染(~μBB/ΔEfs) | 1% | 系统性 | 1% | 系统性 |
| 恒定电场 | 过渡偶极污染(~αE2/ΔEfs) | 0.001% | 系统性 | 0.001% | 系统性 |
| 蒸汽压/密度变化 | 吸收变化 | NA | — | 0.01% | 系统性 |
| 微波源频率 | MW源频率的不确定性 | 0.55% | 系统性 | NA | — |
| 微波源振幅 | 低MW场下振幅的不确定性 | NA | — | 4.4% | 系统性 |
| 双光子失调噪声 (200 kHz) | 耦合和探测激光之间的 相对失调噪声 | NA | — | 0.4% | 统计性 |
| 来自激光强度和探测 的技术噪声 | 拟合峰分离或高度的 统计噪声 | 0.5% | 统计性 | 约1%~7% | 统计性 |
| [1] | SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11):819-824. |
| [2] | ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(1):012002. |
| [3] | ARTUSIO-GLIMPSE A, SIMONS M T, PRAJAPATI N, et al. Modern RF measurements with hot atoms: a technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 2022, 23(5): 44-56. |
| [4] | KÜBLER H, SHAFFER J P, BALUKTSIAN T, et al. Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells[J]. Nature Photonics, 2010, 4(2):112-116. |
| [5] | FAHEY D P, MEYER D H, KUNZ P D, et al. Rydberg vapor EIT sensing performance[C]// roceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC. Washington: Optica Publishing Group, 2021. |
| [6] | SEDLACEK J A, SCHWETTMANN A, KUBLER H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 2013, 111(6): 063001. |
| [7] | ANDERSON D A, SCHWARZKOPF A, MILLER S A, et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 2014, 90(4): 043419. |
| [8] | FAN H Q, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(20): 202001. |
| [9] | JIAO Y, HAO L, HAN X, et al. Atom-based radio-frequency field calibration and polarization measurement using cesiumn floquet states[J]. Physical Review Applied, 2017, 8(1): 14-28. |
| [10] | CLOUTMAN M, CHILCOTT M, ELLIOTT A, et al. Polarization-insensitive microwave electrometry using Rydberg atoms[J]. Physical Review Applied, 2024, 21(4): 044025. |
| [11] | GORDON J A, SIMONS M T, HADDAB A H, et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 2019, 9(4): 045030. |
| [12] | HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1853-1857. |
| [13] | SIMONS M T, HADDAB A H, GORDON J A, et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 2019, 114(11): 114101. |
| [14] | SIMONS M T, HADDAB A H, GORDON J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 2019, 7: 164975. |
| [15] | ROBINSON A K, PRAJAPATI N, SENIC D, et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 2021, 118(11): 114001. |
| [16] | PRAJAPTI N, ARTUSIO-GLIMPSE A, SIMONS M, et al. Synthetic aperture RF reception using Rydberg atoms[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece. New York: IEEE, 2023. |
| [17] | MAO R, LIN Y, FU Y, et al. Digital beamforming and receiving array research based on Rydberg field probes[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(2): 2025-2029. |
| [18] | WU B, ZHOU Y L, DING Z K, et al. Eliminating sensing blind spots of field-enhanced Rydberg atomic antenna via an asymmetric parallel-plate resonator[J]. EPJ Quantum Technology, 2024, 11(1): 30. |
| [19] | DAVID A A, GEORG R, MATTHEW S, et al. Quantum-optical spectroscopy for plasma electric field measurements and diagnostics[J]. arXiv Preprint, arXiv:1712.08717, 2017. |
| [20] | XIN P, QIU T, CHEN L, et al. Modulation dynamics of atomic Rydberg excitation in strong-field tunneling ionization[J]. Journal of the Optical Society of America B, 2021, 38(4): 041031. |
| [21] | ANDREW P R, AMY K R, SAMUEL B, et al. Modeling line broadening and distortion due to spatially non-uniform fields in Rydberg electrometry[J]. arXiv Preprint, arXiv:2208.07325, 2022. |
| [22] | FAN H Q, KUMAR S, SHENG J, et al. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields[J]. Physical Review Applied, 2015, 4(4): 044015. |
| [23] | MEYER D H, KUNZ P D, COX K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 2021, 15(1): 14-47. |
| [24] | NOAMAN M, AMARLOO H, PANDIYAN R, et al. Vapor cell characterization and optimization for applications in Rydberg atom-based radio frequency sensing[C]// Proceedings of the Quantum Sensing, Imaging, and Precision Metrology. Bellingham: SPIE, 2023. |
| [25] | HOLLOWAY C L, SIMONS M T, KAUTZ M, et al. Development and applications of a fiber-coupled atom-based electric field probe[C]// Proceedings of the 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), Amsterdam, Netherlands. New York: IEEE, 2018. |
| [26] | SIMONS M T, GORDON J A, HOLLOWAY C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 2018, 57(22): 6456-6460. |
| [27] | MAO R, LIN Y, YANG K, et al. A high-efficiency fiber-coupled Rydberg-atom integrated probe and its imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 352. |
| [28] | RAITHEL G A, CARDMAN R, DUSPAYEV A, et al. Rydberg atoms for precision measurement in science and technology[C]// Proceedings of the Quantum Sensing, Imaging, and Precision Metrology. Bellingham: SPIE, 2023. |
| [29] | MEYER D H, COX K C, FATEMI F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 2018, 112(21): 211108. |
| [30] | JIAO Y, HAN X, FAN J, et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 2019, 12(12): 126002. |
| [31] | HOLLOWAY C, SIMONS M, HADDAB A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 2021, 63(3): 63-76. |
| [32] | LI H, HU J, BAI J, et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 2022, 30(8): 13522. |
| [33] | YANG K, SUN Z, MAO R, et al. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 2022, 20(8): 81-203. |
| [34] | CAI M, YOU S, ZHANG S, et al. Sensitivity extension of atom-based amplitude-modulation microwave electrometry via high Rydberg states[J]. Applied Physics Letters, 2023, 122(16): 161103. |
| [35] | YUAN J, JIN T, YAN Y, et al. A Rydberg atom-based amplitude-modulated receiver using the dual-tone microwave field[J]. EPJ Quantum Technology, 2024, 11(1): 2. |
| [36] | BERWEGER S, ARTUSIO-GLIMPSE A B, ROTUNNO A P, et al. Closed-loop quantum interferometry for phase-resolved Rydberg-atom field sensing[J]. Physical Review Applied, 2023, 20(5):054009. |
| [37] | HOLLOWAY C L, SIMONS M T, HADDAB A H, et al. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: quantum physics meets music[J]. AIP Advances, 2019, 9(6): 065110. |
| [38] | PRAJAPATI N, ROTUNNO A P, BERWEGER S, et al. TV and video game streaming with a quantum receiver: a study on a Rydberg atom-based receiver’s bandwidth and reception clarity[J]. AVS Quantum Science, 2022, 4(3): 035001. |
| [39] | ZHANG P, YUAN S, JING M, et al. Image transmission utilizing amplitude modulation in Rydberg atomic antenna[J]. IEEE Photonics Journal, 2024, 16(2): 1-7. |
| [40] | MEYER D H, HILL J C, KUNZ P D, et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. arXiv Preprint, arXiv:2208. 10287v2, 2023. |
| [41] | HAO L, XUE Y, FAN J, et al. Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field[J]. Chinese Physics B, 2019, 28(5): 53-202. |
| [42] | KUMAR S, FAN H, JOZANI A, et al. Microwave electric field measurement using frequency modulation spectroscopy in Rydberg atoms vapor cells[C]// Proceedings of the 13th International Conference on Fiber Optics and Photonics, Kanpur. Washington: Optica Publishing Group, 2016. |
| [43] |
KUMAR S, FAN H, KUBLER H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8): 8625-8637.
doi: 10.1364/OE.25.008625 pmid: 28437940 |
| [44] |
KUMAR S, FAN H, KUBLER H, et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 2017, 7: 42981.
doi: 10.1038/srep42981 pmid: 28218308 |
| [45] | YANG W, JING M, ZHANG H, et al. Enhancing the sensitivity of atom-based microwave-field electrometry using a mach-zehnder interferometer[J]. Physical Review Applied, 2023, 19(6): 064021. |
| [46] | LI Q, JU M, SHANG X, et al. Broadband and robust mach-zehnder interferometer for Rydberg atomic system[J]. Optics Express, 2024, 32(4): 5492. |
| [47] | PADGETT M J, STUHLER J, SHIELDS A J, et al. A read-out enhancement for microwave electric field sensing with Rydberg atoms[C]// Proceedings of the Quantum Technologies 2018. Bellingham: SPIE, 2018. |
| [48] | BOHAICHUK S M, RIPKA F, VENU V, et al. Three-photon Rydberg-atom-based radio-frequency sensing scheme with narrow linewidth[J]. Physical Review Applied, 2023, 20(6): L061004. |
| [49] | PRAJAPATI N, BHUSAL N, ROTUNNO A P, et al. Sensitivity comparison of two-photon vs three-photon Rydberg electrometry[J]. Journal of Applied Physics, 2023, 134(2): 023101. |
| [50] | PRAJAPATI N, BERWEGER S, ROTUNNO A P, et al. Investigation of fluorescence versus transmission readout for three-photon Rydberg excitation used in electrometry[J]. arXiv Preprint, arXiv:2402. 00718, 2024. |
| [51] | PRAJAPATI N, ROBINSON A K, BERWEGER S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 2021, 119(21): 214001. |
| [52] | JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911. |
| [53] | WANG Z, JING M, ZHANG P, et al. Noise analysis of the atomic superheterodyne receiver based on flat-top laser beams[J]. Optics Express, 2023, 31(12): 19909. |
| [54] | CAI M, XU Z, YOU S, et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 2022, 9(4): 250. |
| [55] | DU Y J, CONG N, LIU Y, et al. Enhanced microwave-atom coupling via quadrupole transition-dressed Rydberg atoms[J]. Frontiers in Physics, 2024, 12: 13129. |
| [56] | WU B, MAO R, SANG D, et al. Enhancing sensitivity of atomic microwave receiver combining laser arrays[J]. arXiv Preprint, arXiv:2403.14132, 2024. |
| [57] |
HILL J C, HOLLAND W K, KUNZ P D, et al. Intra-cavity frequency-doubled VECSEL system for narrow linewidth Rydberg EIT spectroscopy[J]. Optics Express, 2022, 30(23): 41408-41421.
doi: 10.1364/OE.473676 pmid: 36366620 |
| [58] | YANG B, YAN Y, LI X, et al. Sensitivity of Rydberg microwave electrometry limited by laser frequency noise[J]. Physical Review A, 2024, 109(3): 032609. |
| [59] | SANDIDGE G, SANTAMARIA-BOTELLO G, BOTTOMLEY E, et al. Resonant structures for sensitivity enhancement of Rydberg-atom microwave receivers[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2057-2066. |
| [60] | WU B, LIAO D, DING Z, et al. Local oscillator port integrated resonator for Rydberg atom-based electric field measurement enhancement[J]. EPJ Quantum Technology, 2024, 11(1): 22. |
| [61] | COX K C, MEYER D H, CASTILLO Z A, et al. Receiving electric fields with a Rydberg quantum sensor[C]// Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC. Washington: Optica Publishing Group, 2020. |
| [62] | MEYER D H, O’BRIEN C, FAHEY D P, et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 2021, 104(4): 43-103. |
| [63] | COX K C, MEYER D H, FATEMI F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physics Review Letters, 2018, 121(11): 110502. |
| [64] | NORRGARD E B, ECKEL S P, HOLLOWAY C L, et al. Blackbody-radiation-noise broadening of quantum systems[J]. Physical Review A, 2021, 103(4): 042806. |
| [65] | NORRGARD E B, ECKEL S P, HOLLOWAY C L, et al. Quantum blackbody thermometry[J]. New Journal of Physics, 2021, 23(3): 33-37. |
| [66] | BOHAICHUK S M, BOOTH D, NICKERSON K, et al. Origins of Rydberg-atom electrometer transient response and its impact on radio-frequency pulse sensing[J]. Physical Review Applied, 2022, 18(3): 034030. |
| [67] | KNARR S H, BUCKLEW V G, LANGSTON J, et al. Spatiotemporal multiplexed Rydberg receiver[J]. IEEE Transactions on Quantum Engineering, 2023, 4: 1-8. |
| [68] | ARTUSIO-GLIMPSE A B, DAVID A L, SEAN M B, et al. Increased instantaneous bandwidth of Rydberg atom electrometry with an optical frequency comb probe[J]. arXiv Preprint, arXiv:2402.17942, 2024. |
| [69] | HU J, JIAO Y, HE Y, et al. Improvement of response bandwidth and sensitivity of Rydberg receiver using multi-channel excitations[J]. EPJ Quantum Technology, 2023, 10(1): 51. |
| [70] | SIMONS M T, GORDON J A, HOLLOWAY C L. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency[J]. Journal of Applied Physics, 2016, 120(12): 123103. |
| [71] |
SONG Z, LIU H, LIU X, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 2019, 27(6): 8848-8857.
doi: 10.1364/OE.27.008848 pmid: 31052696 |
| [72] | HU J, LI H, SONG R, et al. Continuous-frequency weak electric field measurement with Rydberg atoms[J]. arXiv Preprint, arXiv:2201.10068, 2024. |
| [73] | DU Y, CONG N, WEI X, et al. Realization of multiband communications using different Rydberg final states[J]. AIP Advances, 2022, 12(6): 065118. |
| [74] | MEYER D H, HILL J C, KUNZ P D, et al. Single quantum sensor simultaneously measuring fields across six octaves[C]//Proceedings of the CLEO 2023, San Jose, CA. Washington: Optica Publishing Group, 2023. |
| [75] | LIU Z K, ZHANG L H, LIU B, et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 2022, 13(1): 1997. |
| [76] | GOKHALE P, CARNAHAN C, CLARK W, et al. Deep learning for low-latency, quantum-ready RF sensing[J]. arXiv Preprint, arXiv:2404.17962, 2024. |
| [77] | DIXON K, NICKERSON K, BOOTH D W, et al. Rydberg-atom-based electrometry using a self-heterodyne frequency-comb readout and preparation scheme[J]. Physical Review Applied, 2023, 19(3): 34-78. |
| [78] | SIMONS M T, ARTUSIO-GLIMPSE A B, HOLLOWAY C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104(3): 032824. |
| [79] | BERWEGER S, PRAJAPATI N, ARTUSIO-GLIMPSE A B, et al. Rydberg-state engineering: investigations of tuning schemes for continuous frequency sensing[J]. Physical Review Applied, 2023, 19(4): 44-49. |
| [80] | HU J, LI H, SONG R, et al. Continuously tunable radio frequency electrometry with Rydberg atoms[J]. Applied Physics Letters, 2022, 121(1): 014002. |
| [81] | OUYANG K, SHI Y, LEI M, et al. Continuous broadband microwave electric field measurement in Rydberg atoms based on the DC stark effect[J]. Applied Physics Letters, 2023, 123(26): 264001. |
| [82] | ELGEE P K, HILL J C, LEBLANC K J E, et al. Satellite radio detection via dual-microwave Rydberg spectroscopy[J]. Applied Physics Letters, 2023, 123(8): 084001. |
| [83] | ARUMUGAM D, PARK J H, FEYISSA B, et al. Remote sensing of soil moisture using Rydberg atoms and satellite signals of opportunity[J]. arXiv Preprint, arXiv:2403.03175, 2024. |
| [84] | COX K C, MEYER D H, CASTILLO Z A, et al. Quantum-limited electro-optic modulator based on thermal Rydberg atoms[C]// Proceedings of the Frontiers in Optics/Laser Science, Washington, DC. Washington: Optica Publishing Group, 2018. |
| [85] | HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 2017, 121(23): 233106. |
| [86] | SIMONS M T, KAUTZ M D, GORDON J A, et al. Uncertainties in Rydberg atom-based RF e-field measurements[C]// Proceedings of the 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), Amsterdam, Netherlands. New York: IEEE, 2018. |
| [87] | HOLLOWAY C L, GORDON J A, FAN H, et al. The uncertainties associated with Rydberg atom based electric field measurements[C]// Proceedings of the 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Vancouver, BC, Canada. New York: IEEE, 2015. |
| [88] | HOLLOWAY C L, GORDON J A, SIMONS M T, et al. Atom-based RF electric field measurements: an initial investigation of the measurement uncertainties[C]// Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). New York: IEEE, 2015. |
| [89] | HOLLOWAY C L, SIMONS M T, GORDON J A. Development of a new atom-based SI traceable electric-field metrology technique[C]// Proceedings of the 2017 Antenna Measurement Techniques Association Symposium (AMTA), Atlanta, GA, USA. New York: IEEE, 2017. |
| [90] | HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. |
| [91] | SADWICK L P, YANG T, SIMONS M T, et al. Atom-based RF electric field metrology above 100 GHz[C]// Proceedings of the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications IX. Bellingham: SPIE, 2016. |
| [92] |
FAN H Q, KUMAR S, DASCHNER R, et al. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells[J]. Optics Letters, 2014, 39(10): 3030-3033.
doi: 10.1364/OL.39.003030 pmid: 24978265 |
| [93] | HOLLOWAY C L, GORDON J, JEFFERTS S. Rydberg atom based sub-wavelength imaging[C]// Proceedings of the 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Memphis, TN, USA. New York: IEEE, 2014. |
| [94] | HOLLOWAY C L, GORDON J A, SCHWARZKOPF A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and autler-townes splitting in Rydberg atoms[J]. Applied Physics Letters, 2014, 104(24): 244102. |
| [95] | ANDERSON D A, PARADIS E, RAITHEL G, et al. High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element[C]// Proceedings of the 2018 11th Global Symposium on Millimeter Waves (GSMM), Boulder, CO, USA. New York: IEEE, 2018. |
| [96] | BAI J, FAN J, HAO L, et al. Measurement of the near field distribution of a microwave horn using a resonant atomic probe[J]. Applied Sciences, 2019, 9(22): 4895. |
| [97] | CARDMAN R, GONÇALVES L F, SAPIRO R E, et al. Atomic 2D electric field imaging of a Yagi-Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument[J]. Advanced Optical Technologies, 2020, 9(5): 305-312. |
| [98] | ANDERSON D A, GONCALVES L F, LEGAIE R, et al. Towards Rydberg atom synthetic apertures: wide-area high-resolution RF amplitude and phase imaging with Rydberg probes[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). New York: IEEE, 2023. |
| [99] | SHI Y, REN W, LI W, et al. A new antenna near-field measurement method based on Rydberg atoms[C]// Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT). New York: IEEE, 2023. |
| [1] | HE Linlin, ZHANG Qian. Patent situation analysis and development suggestions for quantum information technology [J]. Information and Communications Technology and Policy, 2024, 50(7): 30-38. |
| [2] | YAO Fei, LAI Junsen, LI Fang, ZHAO Wenyu. Enabling technologies and building blocks of quantum information network [J]. Information and Communications Technology and Policy, 2023, 49(7): 60-67. |
| [3] | ZHANG Meng, LAI Junsen. Research progress and application analysis of quantum sensing [J]. Information and Communications Technology and Policy, 2021, 47(9): 72-78. |
| [4] | LAI Junsen, ZHAO Wenyu, ZHANG Haiyi. Quantum information network concept and prospect analysis [J]. Information and Communications Technology and Policy, 2021, 47(7): 17-22. |
| [5] | ZHANG Haiyi, CUI Xiao, WU Bingbing. Analysis of quantum computing industrial developments and applications [J]. Information and Communications Technology and Policy, 2020, 46(7): 20-26. |
| [6] | LYU Bo, LAI Junsen. Quantum computing standardization progress [J]. Information and Communications Technology and Policy, 2020, 46(7): 38-42. |
| [7] | ZHANG Qian, LI Wenyu. Insights into the development of global quantum information innovation [J]. Information and Communications Technology and Policy, 2020, 46(12): 81-85. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn
