Information and Communications Technology and Policy ›› 2024, Vol. 50 ›› Issue (7): 39-47.doi: 10.12267/j.issn.2096-5931.2024.07.006
Previous Articles Next Articles
WANG Jing, ZHANG Meng, LI Fang
Received:2024-06-10
Online:2024-07-25
Published:2024-07-30
CLC Number:
WANG Jing, ZHANG Meng, LI Fang. Analysis of quantum computing technology and industrial development trends[J]. Information and Communications Technology and Policy, 2024, 50(7): 39-47.
| 时间/年 | 战略规划/法案 | 国家/地区 | 投资规模/美元 |
|---|---|---|---|
| 2014 | 国家量子技术计划 | 英国 | 10年投资约6.4亿 |
| 2018 | 光量子跃迁旗舰计划 | 日本 | 3年投资约1.2亿 |
| 2018 | 量子旗舰计划 | 欧盟 | 10年投资约11亿 |
| 2018 | NQI法案(一期) 国家量子信息科学战略 | 美国 | 计划5年投资12.75亿 实际投资已达37.38亿 |
| 2018 | 量子技术从科研到市场 | 德国 | 投资约7.1亿 |
| 2019 | 量子技术发展国家计划 | 荷兰 | 7年投资约7.4亿 |
| 2019 | 国家量子技术计划 | 以色列 | 5年投资约3.3亿 |
| 2019 | 国家量子行动计划 | 俄罗斯 | 5年投资约5.3亿 |
| 2020 | 国家量子技术投资计划 | 法国 | 投资约19.6亿 |
| 2021 | 量子系统研究计划 | 德国 | 5年投资约21.7亿 |
| 2022 | 芯片与科学法案 | 美国 | 4个量子项目 1.53亿/年 |
| 2023 | 国家量子战略 | 加拿大 | 投资约2.7亿 |
| 2023 | 国家量子战略 | 英国 | 未来10年投资31.8亿 |
| 2023 | 国家量子战略 | 澳大利亚 | 投资约6.4亿 |
| 2023 | 国家量子技术战略 | 丹麦 | 5年投资约1亿 |
| 2023 | 量子科技发展战略 | 韩国 | 2035年前投资17.9亿 |
| 2023 | 国家量子任务 | 印度 | 2030年前投资7.2亿 |
| 2023 | 量子2030 | 爱尔兰 | 已投资0.24亿 |
| 2023 | NQI法案(二期) | 美国 | 2024年预算9.68亿 |
| 时间/年 | 战略规划/法案 | 国家/地区 | 投资规模/美元 |
|---|---|---|---|
| 2014 | 国家量子技术计划 | 英国 | 10年投资约6.4亿 |
| 2018 | 光量子跃迁旗舰计划 | 日本 | 3年投资约1.2亿 |
| 2018 | 量子旗舰计划 | 欧盟 | 10年投资约11亿 |
| 2018 | NQI法案(一期) 国家量子信息科学战略 | 美国 | 计划5年投资12.75亿 实际投资已达37.38亿 |
| 2018 | 量子技术从科研到市场 | 德国 | 投资约7.1亿 |
| 2019 | 量子技术发展国家计划 | 荷兰 | 7年投资约7.4亿 |
| 2019 | 国家量子技术计划 | 以色列 | 5年投资约3.3亿 |
| 2019 | 国家量子行动计划 | 俄罗斯 | 5年投资约5.3亿 |
| 2020 | 国家量子技术投资计划 | 法国 | 投资约19.6亿 |
| 2021 | 量子系统研究计划 | 德国 | 5年投资约21.7亿 |
| 2022 | 芯片与科学法案 | 美国 | 4个量子项目 1.53亿/年 |
| 2023 | 国家量子战略 | 加拿大 | 投资约2.7亿 |
| 2023 | 国家量子战略 | 英国 | 未来10年投资31.8亿 |
| 2023 | 国家量子战略 | 澳大利亚 | 投资约6.4亿 |
| 2023 | 国家量子技术战略 | 丹麦 | 5年投资约1亿 |
| 2023 | 量子科技发展战略 | 韩国 | 2035年前投资17.9亿 |
| 2023 | 国家量子任务 | 印度 | 2030年前投资7.2亿 |
| 2023 | 量子2030 | 爱尔兰 | 已投资0.24亿 |
| 2023 | NQI法案(二期) | 美国 | 2024年预算9.68亿 |
| [1] | 中国信息通信研究院. 量子信息技术发展与应用研究报告(2023)[R], 2023. |
| [2] | 中国信息通信研究院. 量子计算发展态势研究报告(2023)[R], 2023. |
| [3] | European Commission. The quantum technologies flagship[Z/OL]. (2018-10-29)[2024-03-19]. https://ec europa.eu/commission/presscorner/detail/en/IP_18_6205. |
| [4] | 115th Congress. National quantum initiative act[Z/OL]. (2021-12-21)[2024-03-19]. https://www.congress.gov/bill/115th-congress/house-bill/6227. |
| [5] | National Science and Technology Council. National Quantum Initiative (NQI) supplement to the president’s FY 2024 budget[Z/OL]. (2023-12-01)[2024-03-19]. https://www.quantum.gov/the-national-quantum-initiative-supplement-to-the-presidents-fy-2024-budget-released/. |
| [6] | 118th Congress. The national quantum initiative reauthorization act[Z/OL]. (2023-11-03)[2024-03-19]. https://science.house.gov/2023/11/the-national-quantum-initiative-reauthorization-act. |
| [7] | OpenSuperQPlus. Open superconducting quantum computers[EB/OL]. (2022-09-09)[2024-03-19]. https://www.opensuperqplus.eu/. |
| [8] | PASQuanS2. Programmable atomic large-scale quantum simulation 2.1[EB/OL]. (2023-04-01)[2024-03-19]. https://pasquans2.eu/. |
| [9] | European Commission. European declaration on quantum technologies[Z/OL]. (2023-12-06)[2024-03-19]. https://digital-strategy.ec.europa.eu/en/library/european-declaration-quantum-technologies. |
| [10] | European Commission. New roadmap to position Europe as the quantum valley of the world[Z/OL]. (2024-02-14)[2024-05-08]. https://qt.eu/news/2024/2024-02-14_new-roadmap-to-position-europe-as-the-quantum-valley-of-the-world. |
| [11] | 国家发展和改革委员会. 关于2022年国民经济和社会发展计划执行情况与2023年国民经济和社会发展计划草案的报告[Z], 2023. |
| [12] | 工业和信息化部. 工业和信息化部等四部门关于印发《新产业标准化领航工程实施方案(2023─2035年)》的通知[Z], 2023. |
| [13] | IBM. IBM quantum summit 2023[EB/OL]. (2023-12-04)[2024-03-19]. https://www.ibm.com/quantum/summit-2023. |
| [14] | SHI Y H, LIU Y, ZHANG Y, et al. Quantum simulation of topological zero modes on a 41-qubit superconducting processor[J]. Physical Review Letters, 2023, 131(8): 080401. |
| [15] | 国盾量子. 不算太难?500比特量子计算芯片面世[EB/OL]. (2024-04-25)[2024-05-07]. https://baijiahao.baidu.com/s?id=1797359672674040367&wfr=spider&for=pc. |
| [16] | 中国科学院. 2024中关村论坛年会发布中国科学院多项重大成果[EB/OL]. (2024-04-25)[2024-05-07]. https://www.cas.cn/spx/202404/t20240425_5012649.shtml. . |
| [17] | Quantinuum. Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and quantum volume[EB/OL]. (2024-04-16)[2024-05-08]. https://www.quantinuum.com/news/quantinuum-extends-its-significant-lead-in-quantum-computing-achieving-historic-milestones-for-hardware-fidelity-and-quantum-volume. |
| [18] | Atom Computing. Quantum startup Atom Computing first to exceed 1 000 qubits[EB/OL]. (2023-10-24)[2024-03-20]. https://atom-computing.com/quantum-startup-atom-computing-first-to-exceed-1000-qubits/. |
| [19] | PAUSE L, STURM L, MITTEBüHLER M, et al. Supercharged two-dimensional tweezer array with more than 1 000 atomic qubits[J]. Optica, 2024, 11(2):222-226. |
| [20] | Infleqtion. Infleqtion unveils 5-year quantum computing roadmap, advancing plans to commercialize quantum at scale[EB/OL]. (2024-02-08)[2024-05-07]. https://thequantuminsider.com/2024/02/08/infleqtion-unveils-5-year-quantum-computing-roadmap-advancing-plans-to-commercialize-quantum-at-scale/. |
| [21] | DENG Y H, GU Y C, LIU H L, et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage[J]. Physical Review Letters, 2023, 131(15):150601. |
| [22] | DENG Y H, GONG S Q, GU Y C, et al. Solving graph problems using Gaussian boson sampling[J]. Physical Review Letters, 2023, 130(19):190601. |
| [23] | 玻色量子. 玻色量子亮相首届朝阳科技创新发展大会[EB/OL]. (2024-04-23)[2024-05-08]. https://www.qboson.com/newsDetail?id=233. |
| [24] | Intel. Quantum computing systems achieving quantum practicality[EB/OL]. (2023-06-15)[2024-03-20]. https://www.intel.com/content/www/us/en/research/quantum-computing.html. |
| [25] | LIU H, WANG K, GAO F, et al. Ultrafast and electrically tunable rabi frequency in a germanium hut wire hole spin qubit[J]. Nano Letters, 2023, 23(9):3810-3817. |
| [26] |
GOTTESMAN D. Class of quantum error-correcting codes saturating the quantum hamming bound[J]. Physical Review A, 1996, 54(3):1862-1868.
pmid: 9913672 |
| [27] | Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 2023, 614:676-681. |
| [28] | NI Z C, LI S, DENG X W, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023,616:56-60. |
| [29] | SIVAK V V, EICKBUSCH A, ROYER B, et al. Real-time quantum error correction beyond break-even[J]. Nature, 2023,616:50-55. |
| [30] | SCHOLL P, SHAW A L, TSAI R B-S, et al. Erasure conversion in a high-fidelity Rydberg quantum simulator[J]. Nature, 2023,622:273-278. |
| [31] | MA S, LIU G, PENG P, et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit[J]. Nature, 2023,622:279-284. |
| [32] | EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer[J]. Nature, 2023,622:268-272. |
| [33] | Intel. Intel releases quantum software development kit version 1.0 to grow developer ecosystem[EB/OL]. (2023-02-28)[2024-03-20]. https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-quantum-sdk.html#gs.riwex3. |
| [34] | HPCwire. QC ware launches promethium, a quantum chemistry saas; targets hybrid world near-term[EB/OL]. (2023-04-17)[2024-03-20]. https://www.hpcwire.com/2023/04/17/qc-ware-launches-promethium-a-quantum-chemistry-saas-targets-hybrid-world-near-term/. |
| [35] | Microsoft. Azure quantum development kit[EB/OL]. (2023-09-21)[2024-03-20]. https://github.com/microsoft/qsharp/wiki/Installation. |
| [36] | Pasqal. Pulser studio graphical user interface[EB/OL]. (2023-01-09)[2024-03-20]. https://www.pasqal.com/solutions/pulser-studio. |
| [37] | 启科量子. 首套国产ARTIQ架构量子计算测控系统发布[EB/OL]. (2022-04-08)[2024-05-09]. https://www.qudoor.com/index.php?c=show&id=19. |
| [38] | 中微达信. 可扩展百比特量子测控系统ZW-QCS1000[EB/OL]. (2023-08-24)[2024-05-09]. http://www.das-zone.com/view/system/systemProduct3.html. |
| [39] | Amazon. Palace[EB/OL]. (2023-03-10)[2024-03-20]. https://aws.amazon.com/cn/blogs/quantum-computing/aws-releases-open-source-software-palace-for-cloud-base. |
| [40] | 量旋科技. 量旋科技全新升级三大业务线产品,加速推进量子计算普惠化[EB/OL]. (2023-04-14)[2024-03-20]. https://www.spinq.cn/newsDetail/a915d803-d94d-485e-b6ad-ee6356062b98. |
| [41] | The Quantum Insider. Citi and classiq use amazon braket to explore quantum solutions for portfolio optimization[EB/OL]. (2024-02-12)[2024-05-08]. https://thequantuminsider.com/2024/02/12/citi-and-classiq-use-amazon-braket-to-explore-quantum-solutions-for-portfolio-optimization/. |
| [42] | Zapata. Zapata AI speeds up monte carlo simulation +8 000x for the financial services industry[EB/OL]. (2024-03-20)[2024-05-08]. https://zapata.ai/fast-alternative-to-monte-carlo-finance/. |
| [43] | The Quantum Insider. Phasecraft suite of algorithms simulates materials on near-term quantum computers[EB/OL]. (2024-01-24)[2024-05-08]. https://thequantuminsider.com/2024/01/24/phasecraft-suite-of-algorithms-simulates-materials-on-near-term-quantum-computers/. |
| [44] | IBM. Cleveland clinic and IBM unveil first quantum computer dedicated to healthcare research[EB/OL]. (2023-05-20)[2024-03-22]. https://newsroom.ibm.com/2023-03-20-Cleveland-Clinic-and-IBM-Unveil-First-Quantum-Computer-Dedicated-to-Healthcare-Research. |
| [45] | Zapata. Quantum computing-enhanced algorithm unveils novel inhibitors for KRAS[EB/OL]. (2024-02-28)[2024-05-08]. https://zapata.ai/publications/quantum-computing-enhanced-algorithm-unveils-novel-inhibitors-for-kras/. |
| [1] | LYU Pin, YUAN Tao. Application ecosystem construction and development suggestions for quantum computing cloud platforms [J]. Information and Communications Technology and Policy, 2024, 50(7): 18-23. |
| [2] | LAI Junsen, ZHAO Wenyu, ZHANG Haiyi. Analysis of information security threats for quantum computing and countermeasures [J]. Information and Communications Technology and Policy, 2024, 50(7): 24-29. |
| [3] | HE Linlin, ZHANG Qian. Patent situation analysis and development suggestions for quantum information technology [J]. Information and Communications Technology and Policy, 2024, 50(7): 30-38. |
| [4] | JIA Yu, ZHANG Bowen. Research on quantum computing technology development and innovation [J]. Information and Communications Technology and Policy, 2024, 50(7): 69-75. |
| [5] | ZHANG Meng, WANG Jing, HUANG Zhiguo, QIAN Ling. Research on current situation and trend of quantum-classical fused computing development [J]. Information and Communications Technology and Policy, 2024, 50(7): 9-17. |
| [6] | ZHAO Wending, CAI Minglei, MEI Quanxin, YAO Lin, YANG Haoxiang. Research and application of trapped-ion quantum computing [J]. Information and Communications Technology and Policy, 2023, 49(7): 17-26. |
| [7] | LI Zhuoying, DENG Ziyi, ZHOU Zhuojun, QIU Daowen, ZHU Feng, LUO Le. Development and application of distributed quantum computing with trapped ions [J]. Information and Communications Technology and Policy, 2023, 49(7): 2-8. |
| [8] | ZHANG Meng, WANG Jing, ZHAO Wenyu, ZHANG Haiyi. Architecture and development of quantum computing cloud platform [J]. Information and Communications Technology and Policy, 2023, 49(7): 27-35. |
| [9] | FU Yaobin, ZHOU Hui. Overview of hybrid quantum-classical computing development [J]. Information and Communications Technology and Policy, 2023, 49(7): 36-43. |
| [10] | WANG Jing, ZHANG Meng, LI Fang, ZHANG Haiyi. Analysis of technology and application development of quantum computing [J]. Information and Communications Technology and Policy, 2023, 49(7): 9-16. |
| [11] | WANG Jing, LI Hongyang, ZHAO Wenyu. Analysis of the technology research and application exploration of quantum computing [J]. Information and Communications Technology and Policy, 2022, 48(7): 20-27. |
| [12] | WANG Xinwen, JIN Xianmin. Research and application of photonic quantum computing [J]. Information and Communications Technology and Policy, 2022, 48(7): 37-42. |
| [13] | ZHANG Meng, LAI Junsen, ZHANG Haiyi, ZHAO Xin. Research and development trend of quantum computing benchmarking [J]. Information and Communications Technology and Policy, 2022, 48(7): 44-51. |
| [14] | LYU Bo, LAI Junsen. Quantum computing standardization progress [J]. Information and Communications Technology and Policy, 2020, 46(7): 38-42. |
| [15] | CUI Ziwei, WANG Weiyu, YUNG Man Hong, . The status and development of quantum computation cloud platform [J]. Information and Communications Technology and Policy, 2020, 46(7): 43-48. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn
