[1] |
FETZ E E. Operant conditioning of cortical unit activity[J]. Science, 1969, 163(3870):955-958.
pmid: 4974291
|
[2] |
KHAN M A, DAS R, IVERSEN H K, et al. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation:from designing to application[J]. Computers in Biology and Medicine, 2020, 123:103843.
|
[3] |
GAO X, WANG Y, CHEN X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends in Cognitive Sciences, 2021, 25(8):671-684.
doi: 10.1016/j.tics.2021.04.003
pmid: 34116918
|
[4] |
WOO S, LEE J, KIM H, et al. An open source-based BCI application for virtual world tour and its usability evaluation[J]. Frontiers in Human Neuroscience, 2021, 15:647839.
|
[5] |
AVIYENTE S. Compressed sensing framework for EEG compression[C]// 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. Madison: IEEE Press, 2007:181-184.
|
[6] |
ZHANG Z, RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8):2009-2015.
|
[7] |
SHARMA S, CHAUDHURY S, JAYADEVA. Block sparse variational bayes regression using matrix variate distributions with application to ssvep detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33(1):351-365.
|
[8] |
GUPTA V, PACHORI R B. FB dictionary based SSBL-EM and its application for multi-class SSVEP classification using eight-channel EEG signals[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-8.
|
[9] |
MICHEL C M, KOENIG T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review[J]. Neuroimage, 2018, 180:577-593.
doi: S1053-8119(17)31008-X
pmid: 29196270
|
[10] |
杨晨. 面向应用的稳态视觉诱发电位脑机接口算法及系统研究[D]. 北京: 清华大学, 2018.
|
[11] |
YANG C, ZHANG H, ZHANG S, et al. The spatio-temporal equalization for evoked or event-related potential detection in multichannel EEG data[J]. IEEE Transactions on Biomedical Engineering, 2019, 67(8):2397-2414.
|
[12] |
MOULINES E, DUHAMEL P, CARDOSO J F, et al. Subspace methods for the blind identification of multichannel FIR filters[J]. Signal Processing IEEE Transactions, 1995, 43(2):516-525.
|
[13] |
GOROKHOV A, LOUBATON P. Subspace-based techniques for blind separation of convolutive mixtures with temporally correlated sources[J]. IEEE Transactions on Circuits and Systems I-regular Papers, 1997, 44:813-820.
|
[14] |
WANG Y, CHEN X, GAO X, et al. A benchmark dataset for ssvep-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(10):1746-1752.
|
[15] |
BIN G, GAO X, YAN Z, et al. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method[J]. Journal of Neural Engineering, 2009, 6(4):046002.
|
[16] |
CHEN X, WANG Y, GAO S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4):046008.
|
[17] |
WANG Y, GAO X, HONG B, et al. Brain-computer interfaces based on visual evoked potentials[J]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(5):64-71.
doi: 10.1109/MEMB.2008.923958
pmid: 18799392
|