[1] |
ZHANG Z, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3):28-41.
|
[2] |
SAAD W, BENNIS M, CHEN M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3):134-142.
|
[3] |
UDAYAKUMAR E, KRISHNAVENI V. A review on interference management in millimeter-wave MIMO systems for future 5G networks[M]// Saini, HS, SrinivasT, VinodKumar D M, et al. Innovations in electrical and electronics engineering. Singapore: Springer Singapore, 2020: 715-721.
|
[4] |
LIU F, CUI Y, MASOUROS C, et al. Integrated sensing and communications: towards dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6):1728-1767.
doi: 10.1109/JSAC.2022.3156632
URL
|
[5] |
TAGHVAEE H, JAIN A, ABADAL S, et al. On the enabling of multi-user communications with reconfigurable intelligent surfaces[J]. arXiv preprint arXiv: 2106.06789v1, 2021.
|
[6] |
AKYILDIZ I F, JORNET J M. Realizing ultra-massive MIMO (1024 × 1024) communication in the (0.06-10) terahertz band[J]. Nano Communication Networks, 2016, 8(2):46-54.
doi: 10.1016/j.nancom.2016.02.001
URL
|
[7] |
RANGAN S, RAPPAPORT T S, ERKIP E. Millimeter-wave cellular wireless networks: potentials and challenges[J]. Proceedings of the IEEE, 2014, 102(3):366-385.
doi: 10.1109/JPROC.2014.2299397
URL
|
[8] |
BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2):74-80.
|
[9] |
AKDENIZ M R, LIU Y, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6):1164-1179.
doi: 10.1109/JSAC.2014.2328154
URL
|
[10] |
HAN C, AKYILDIZ I F. Distance-aware bandwidth-adaptive resource allocation for wireless systems in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(4):541-553.
doi: 10.1109/TTHZ.5503871
URL
|
[11] |
JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10):3211-3221.
doi: 10.1109/TWC.2011.081011.100545
URL
|
[12] |
CUI M, DAI L. Channel estimation for extremely large-scale MIMO: far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4):2663-2677.
doi: 10.1109/TCOMM.2022.3146400
URL
|
[13] |
ZHANG Y, WU X, YOU C. Fast near-field beam training for extremely large-scale array[J]. IEEE Wireless Communications Letters, 2022, 11(12):2625-2629.
doi: 10.1109/LWC.2022.3212344
URL
|
[14] |
HADJI B, FERGANI L, DJEDDOU M. Channel estimation based on low-complexity hierarchical codebook design for millimeter-wave MIMO systems[J]. International Journal of Communication Systems, 2021, 34(4):47-50.
|
[15] |
WU C, YOU C, LIU Y, et al. Two-stage hierarchical beam training for near-field communications[J]. arXiv preprint arXiv: 2302.12511, 2023.
|
[16] |
CARVALHO E D, ALI A, AMIRI A, et al. Non-stationarities in extra-large-scale massive MIMO[J]. IEEE Wireless Communications, 2020, 27(4):74-80.
|
[17] |
ANUM A, ELISABETH D C, ROBERT W H. Linear receivers in non-stationary massive MIMO channels with visibility regions[J]. IEEE Wireless Communications Letters, 2019, 8(3):885-888.
doi: 10.1109/LWC.5962382
URL
|
[18] |
HAN Y, JIN S, WEN C K, et al. Channel estimation for extremely large-scale massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(5):633-637.
doi: 10.1109/LWC.5962382
URL
|