Information and Communications Technology and Policy ›› 2022, Vol. 48 ›› Issue (9): 34-49.doi: 10.12267/j.issn.2096-5931.2022.09.005
Previous Articles Next Articles
LI Yuanbo, WANG Yiqin, HAN Chong
Received:
2022-07-25
Online:
2022-09-15
Published:
2022-09-29
CLC Number:
LI Yuanbo, WANG Yiqin, HAN Chong. A comprehensive survey on terahertz channel measurement, modeling, and analysis[J]. Information and Communications Technology and Policy, 2022, 48(9): 34-49.
测量系统种类 | 基于矢网的测量系统 | 基于滑动相关法的测量系统 | 直接脉冲测量系统 |
---|---|---|---|
测量域 | 频域 | 时域 | 时域 |
测量距离 | 受限于线缆连接 | 受限于传播衰减 | 受限于脉冲功率 |
收发机有线连接 | 需要 | 不需要 | 需要 |
收发机同步 | 有线连接保证同步 | 需要 | 需要 |
测量带宽 | 大(≥10 GHz) | 小(<10 GHz) | 超大(<10 THz) |
测量速度 | 慢 | 快 | 很快 |
复杂度 | 低 | 高 | 中等 |
测量系统种类 | 基于矢网的测量系统 | 基于滑动相关法的测量系统 | 直接脉冲测量系统 |
---|---|---|---|
测量域 | 频域 | 时域 | 时域 |
测量距离 | 受限于线缆连接 | 受限于传播衰减 | 受限于脉冲功率 |
收发机有线连接 | 需要 | 不需要 | 需要 |
收发机同步 | 有线连接保证同步 | 需要 | 需要 |
测量带宽 | 大(≥10 GHz) | 小(<10 GHz) | 超大(<10 THz) |
测量速度 | 慢 | 快 | 很快 |
复杂度 | 低 | 高 | 中等 |
方法 | 确定性建模 | 随机性建模 | 混合建模 | ||
---|---|---|---|---|---|
RT | FDTD | RT-FDTD | 确定-随机混合 | ||
优点 | 高精度 | 超高精度 | 低复杂度 | 高精度 | 精度与复杂度适中 |
复杂度适中 | 高空间分辨率 | 高泛用性 | 泛用性强 | ||
缺点 | 需要详细的环境信息 | 低精确性 | 需要环境和材料信息 | 依赖大量测量结果来参数化 | |
— | 计算资源消耗大 | ||||
适用场景 | 室内、移动场景、UM-MIMO | 设备内部通信、片上通信 | 室内、室外、移动场景 | 室内、设备内部通信 | 室内、室外、移动场景、UM-MIMO |
方法 | 确定性建模 | 随机性建模 | 混合建模 | ||
---|---|---|---|---|---|
RT | FDTD | RT-FDTD | 确定-随机混合 | ||
优点 | 高精度 | 超高精度 | 低复杂度 | 高精度 | 精度与复杂度适中 |
复杂度适中 | 高空间分辨率 | 高泛用性 | 泛用性强 | ||
缺点 | 需要详细的环境信息 | 低精确性 | 需要环境和材料信息 | 依赖大量测量结果来参数化 | |
— | 计算资源消耗大 | ||||
适用场景 | 室内、移动场景、UM-MIMO | 设备内部通信、片上通信 | 室内、室外、移动场景 | 室内、设备内部通信 | 室内、室外、移动场景、UM-MIMO |
[1] |
TATARIA H, SHAFI M, MOLISCH AF, et al. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[J]. Proceedings of the IEEE, 2021, 109(7): 1166-1199.
doi: 10.1109/JPROC.2021.3061701 URL |
[2] | HAN C, WANG Y, LI Y, et al. Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis[J]. IEEE Communications Surveys & Tutorials, 2022. |
[3] | SALOUS S. Radio propagation measurement and channel modelling[M]. John Wiley & Sons, 2013. |
[4] | MOLISCH AF. Wireless communications[M]. John Wiley & Sons, 2012. |
[5] |
PIRKL RJ, DURGIN GD. Optimal sliding correlator channel sounder design[J]. IEEE Transactions on Wireless Communications, 2008, 7(9): 3488-3497.
doi: 10.1109/TWC.2008.070278 URL |
[6] |
AL-SAMAN A, CHEFFENA M, ELIJAH O, et al. Survey of millimeter-wave propagation measurements and models in indoor environments[J]. Electronics, 2021, 10(14): 1653.
doi: 10.3390/electronics10141653 URL |
[7] |
COX H. Spatial correlation in arbitrary noise fields with application to ambient sea noise[J]. The Journal of the Acoustical Society of America, 1973, 54(5): 1289-1301.
doi: 10.1121/1.1914426 URL |
[8] |
NEU J, SCHMUTTENMAER CA. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 2018, 124(23): 231101.
doi: 10.1063/1.5047659 URL |
[9] |
HAN C, BICEN AO, AKYILDIZ IF. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2014, 14(5): 2402-2412.
doi: 10.1109/TWC.2014.2386335 URL |
[10] |
SARKAR TK, JI Z, KIM K, et al. A survey of various propagation models for mobile communication[J]. IEEE Antennas and propagation Magazine, 2003, 45(3): 51-82.
doi: 10.1109/MAP.2003.1232163 URL |
[11] |
SON HW, MYUNG NH. A deterministic ray tube method for microcellular wave propagation prediction model[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(8): 1344-1350.
doi: 10.1109/8.791954 URL |
[12] | ZHAO Y, HAO Y, PARINI C. FDTD characterization of UWB indoor radio channel including frequency dependent antenna directivities[J]. IEEE Antennas and Wireless Propagation Letters, 2007(6): 191-194. |
[13] |
PRIEBE S, KANNICHT M, JACOB M, et al. Ultra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies[J]. Journal of Communications and Networks, 2013, 15(6): 547-558.
doi: 10.1109/JCN.2013.000103 URL |
[14] |
NORKLIT O, ANDERSEN JB. Diffuse channel model and experimental results for array antennas in mobile environments[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(6): 834-840.
doi: 10.1109/8.686770 URL |
[15] |
MOLISCH AF, KUCHAR A, LAURILA J, et al. Geometry‐based directional model for mobile radio channels—principles and implementation[J]. European Transactions on Telecommunications, 2003, 14(4): 351-359.
doi: 10.1002/ett.928 URL |
[16] |
WANG Y, SAFAVI-NAEINI S, CHAUDHURI SK. A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation[J]. IEEE Transactions on antennas and propagation, 2000, 48(5): 743-754.
doi: 10.1109/8.855493 URL |
[17] | PRIEBE S, JACOB M, KUERNER T. AoA, AoD and ToA characteristics of scattered multipath clusters for THz indoor channel modeling[C]// 17th European Wireless 2011-Sustainable Wireless Technologies. VDE, 2011: 1-9. |
[18] | MOLISCH AF, STEINBAUER M, ASPLUND H. “Virtual Cell Deployment Areas”and“Cluster Tracing”-new methods for directional channel modeling in microcells[C]// Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No. 02CH37367). IEEE, 2002, 3: 1279-1283. |
[19] | FRICKE A, HOMANN C, KüRNER T. Time-domain propagation investigations for terahertz intra-device communications[C]// The 8th European Conference on Antennas and Propagation (EuCAP 2014). IEEE, 2014: 1760-1764. |
[20] |
CHEN Y, LI Y, HAN C, et al. Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8163-8176.
doi: 10.1109/TWC.2021.3090781 URL |
[21] | CHEN Y, HAN C, YU Z, et al. 140 GHz channel measurement and characterization in an office room[C]// ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6. |
[22] | HE J, CHEN Y, WANG Y, et al. Channel Measurement and Path-Loss Characterization for Low-Terahertz Indoor Scenarios[C]// 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021: 1-6. |
[23] | WANG Y, LI Y, CHEN Y, et al. 0.3 THz Channel Measurement and Analysis in an L-shaped Indoor Hallway[C]// ICC 2022-IEEE International Conference on Communications. IEEE, 2022: 1-6. |
[24] | LI Y, WANG Y, CHEN Y, et al. Channel Measurement and Analysis in an Indoor Corridor Scenario at 300 GHz[C]// ICC 2022-IEEE International Conference on Communications. IEEE, 2022: 1-6. |
[25] | ABBASI NA, HARIHARAN A, NAIR AM, et al. Double directional channel measurements for THz communications in an urban environment[C]// ICC 2020-2020 IEEE international conference on communications (ICC). IEEE, 2020: 1-6. |
[26] | ABBASI NA, HARIHARAN A, NAIR AM, et al. Channel measurements and path loss modeling for indoor THz communication[C]// 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1-5. |
[27] | ABBASI NA, GOMEZ-PONCE J, BURGHAL D, et al. Double-Directional Channel Measurements for Urban THz Communications on a Linear Route[C]// 2021 IEEE international conference on communications workshops (ICC workshops). IEEE, 2021: 1-6. |
[28] | ABBASI NA, GOMEZ-PONCE J, SHAIKBEPARI SM, et al. Ultra-wideband double directional channel measurements for thz communications in urban environments[C]// ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6. |
[29] | ABBASI NA, GOMEZ-PONCE J, KONDAVETI R, et al. Thz band channel measurements and statistical modeling for urban d2d environments[J]. IEEE Transactions on Wireless Communications, 2022. |
[30] |
PRIEBE S, JASTROW C, JACOB M, et al. Channel and propagation measurements at 300 GHz[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5): 1688-1698.
doi: 10.1109/TAP.2011.2122294 URL |
[31] |
KIM S, KHAN WT, ZAJIC A, et al. D-band channel measurements and characterization for indoor applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3198-3207.
doi: 10.1109/TAP.2015.2426831 URL |
[32] |
CHENG CL, ZAJIC A. Characterization of propagation phenomena relevant for 300 GHz wireless data center links[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(2): 1074-1087.
doi: 10.1109/TAP.2019.2949135 URL |
[33] | CHENG CL, KIM S, ZAJIC A. Comparison of path loss models for indoor 30 GHz, 140 GHz, and 300 GHz channels[C]// 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 716-720. |
[34] | CHENG CL, SANGODOYIN S, ZAJIC A. THz MIMO channel characterization for wireless data center-like environment[C]// 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 2145-2146. |
[35] | TANG P, ZHANG J, TIAN H, et al. Channel measurement and path loss modeling from 220 GHz to 330 GHz for 6G wireless communications[J]. China Communications, 2021, 18(5): 19-32. |
[36] | XING Y, RAPPAPORT TS. Propagation measurements and path loss models for sub-THz in urban microcells[J]. arXiv preprint arXiv:2103.01151, 2021. |
[37] |
JU S, XING Y, KANHERE O, et al. Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1561-1575.
doi: 10.1109/JSAC.2021.3071844 URL |
[38] | JU S, XING Y, KANHERE O, et al. Sub-Terahertz Channel Measurements and Characterization in a Factory Building[J]. arXiv preprint arXiv:2203.03799, 2022. |
[39] | JU S, RAPPAPORT TS. 140 GHz urban microcell propagation measurements for spatial consistency modeling[C]// ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6. |
[40] | JU S, RAPPAPORT TS. Sub-terahertz spatial statistical MIMO channel model for urban microcells at 142 GHz[C]// 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 1-6. |
[41] |
XING Y, RAPPAPORT TS, Ghosh A. Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment[J]. IEEE Communications Letters, 2021, 25(10): 3151-3155.
doi: 10.1109/LCOMM.2021.3088264 URL |
[42] |
XING Y, RAPPAPORT TS. Millimeter wave and terahertz urban microcell propagation measurements and models[J]. IEEE Communications Letters, 2021, 25(12): 3755-3759.
doi: 10.1109/LCOMM.2021.3117900 URL |
[43] | NGUYEN S, JARVELAINEN J, KARTTUNEN A, et al. Comparing radio propagation channels between 28 and 140 GHz bands in a shopping mall[C]// 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018. |
[44] | NGUYEN SLH, HANEDA K, JÄRVELÄINEN J, et al. Large-scale parameters of spatio-temporal short-range indoor backhaul channels at 140 GHz[C]// 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). IEEE, 2021: 1-6. |
[45] | DUPLEICH D, MüLLER R, SKOBLIKOV S, et al. Characterization of the propagation channel in conference room scenario at 190 GHz[C]// 2020 14th European Conference on antennas and propagation (EuCAP). IEEE, 2020: 1-5. |
[46] | EKTI AR, BOYACI A, ALPARSLAN A, et al. Statistical modeling of propagation channels for terahertz band[C]// 2017 IEEE Conference on Standards for Communications and Networking (CSCN). IEEE, 2017: 275-280. |
[47] | RAIMUNDO X, HAJJI M, KLEIN A, et al. Channel characterisation at THz frequencies for high data rate indoor communications[C]// 12th European Conference on Antennas and Propagation (EuCAP 2018). IET, 2018: 1-2. |
[48] | DE BEELDE B, PLETS D, TANGHE E, et al. Directional sub-THz antenna-channel modelling for indoor scenarios[C]// 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021: 1-4. |
[49] | POMETCU L, D’ERRICO R. Large scale and clusters characteristics in indoor sub-THz channels[C]// 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018: 1405-1409. |
[50] | UNDI F, SCHULTZE A, KEUSGEN W, et al. Angle-resolved THz channel measurements at 300 GHz in an outdoor environment[C]// 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021: 1-7. |
[51] |
RAPPAPORT TS, XING Y, MACCARTNEY GR, et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—With a focus on propagation models[J]. IEEE Transactions on antennas and propagation, 2017, 65(12): 6213-6230.
doi: 10.1109/TAP.2017.2734243 URL |
[52] |
MATZ G. On non-WSSUS wireless fading channels[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2465-2478.
doi: 10.1109/TWC.2005.853905 URL |
[53] | GAO X, TUFVESSON F, EDFORS O. Massive MIMO channels—Measurements and models[C]// 2013 Asilomar conference on signals, systems and computers. IEEE, 2013: 280-284. |
[54] |
LIU L, OESTGES C, POUTANEN J, et al. The cost 2100 MIMO channel model[J]. IEEE Wireless Communications, 2012, 19(6): 92-99.
doi: 10.1109/MWC.2012.6393523 URL |
[55] |
ZWICK T, FISCHER C, WIESBECK W. A stochastic multipath channel model including path directions for indoor environments[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(6): 1178-1192.
doi: 10.1109/JSAC.2002.801218 URL |
[56] | WANG J, WANG CX, HUANG J, et al. A novel 3D space-time-frequency non-stationary channel model for 6G THz indoor communication systems[C]// 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020: 1-7. |
[57] |
WANG J, WANG CX, HUANG J, et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1576-1589.
doi: 10.1109/JSAC.2021.3071850 URL |
[58] | AGARWAL A, SENGAR AS, DEBNATH S. A novel noise floor estimation technique for optimized thresholding in spectrum sensing[C]// 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2017: 607-611. |
[59] |
NIKONOWICZ J, MAHMOOD A, SISINNI E, et al. Noise power estimators in ISM radio environments: Performance comparison and enhancement using a novel samples separation technique[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 105-115.
doi: 10.1109/TIM.2018.2833998 URL |
[60] | DUPLEICH D, MüLLER R, THOMÄ R. Practical aspects on the noise floor estimation and cut-off margin in channel sounding applications[C]// 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021: 1-5. |
[61] | WANG CX, HUANG J, WANG H, et al. 6G wireless channel measurements and models: Trends and challenges[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 22-32. |
[62] | HAN C, CHEN Y. Propagation modeling for wireless communications in the terahertz band[J]. IEEE Communications Magazine, 2018, 56(6): 96-101. |
[63] |
NING B, CHEN Z, CHEN W, et al. Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1376-1393.
doi: 10.1109/TVT.2021.3052074 URL |
[64] |
LIASKOS C, NIE S, TSIOLIARIDOU A, et al. End-to-end wireless path deployment with intelligent surfaces using interpretable neural networks[J]. IEEE Transactions on Communications, 2020, 68(11): 6792-6806.
doi: 10.1109/TCOMM.2020.3012577 URL |
[65] | PAYAMI S, TUFVESSON F. Channel measurements and analysis for very large array systems at 2.6 GHz[C]// 2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE, 2012: 433-437. |
[66] |
ALDOSSARI SM, CHEN KC. Machine learning for wireless communication channel modeling: an overview[J]. Wireless Personal Communications, 2019, 106(1): 41-70.
doi: 10.1007/s11277-019-06275-4 URL |
[67] | KATO N, MAO B, TANG F, et al. Ten challenges in advancing machine learning technologies toward 6G[J]. IEEE Wireless Communications, 2020, 27(3): 96-103. |
[68] | HE R, AI B, MOLISCH AF, et al. Clustering enabled wireless channel modeling using big data algorithms[J]. IEEE Communications Magazine, 2018, 56(5): 177-183. |
[69] | IEEE. IEEE standard for high data rate wireless multi-media networks—amendment 2: 100 Gb/s wireless switched point-to-point physical layer[J]. IEEE Std 802.15. 3d-2017, 2017: 1-55. |
[70] | PETROV V, PYATTAEV A, MOLTCHANOV D, et al. Terahertz band communications: applications, research challenges, and standardization activities[C]// 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2016: 183-190. |
[1] | XU Xiaoyan, HAN Kaifeng, DU Ying, LIU Hui, ZHAO Yan. 6G vision and potential key technology analysis [J]. Information and Communications Technology and Policy, 2022, 48(9): 2-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
2020 © Information and Communications Technology and Policy
Address: 52 Huayuan North Road, Beijing, China Phone: 010-62300192 E-mail: ictp@caict.ac.cn